
A new andpowerfulfamily ofparametric shapes extends
the basic quadric surfaces and solids, yielding a variety of usefulforms.
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Over the past 20 years, a great deal of interest has de-
veloped in the use of computer graphics and numerical
methods for three-dimensional design. Significant prog-
ress in geometric modeling is being made, predominantly
for objects best represented by lists of edges, faces, and
vertices. One long-term goal of this work is a unified
mathematical formalism, to form the basis of an interac-
tive and intuitive design environment in which designers
can simulate three-dimensional scenes with shading and
texture, produce usable design images, verify numerical
machining-control commands, and set up finite-element
meshwork for structural and dynamic analysis.
A new collection of smooth parametric objects and a

new set of three-dimensional parametric modifiers show
potential for helping to achieve this goal. The superqua-
dric primitives and angle-preserving transformations ex-
tend the traditional geometric primitives-quadric sur-
faces and parametric patches-used in existing design
packages, producing a new spectrum of flexible forms.
Their chief advantage is that they allow complex solids
and surfaces to be constructed and altered easily from a
few interactive parameters.

Mathematical preliminaries

Given two two-dimensional curves,

[h2 (WI

and

eter, like longitude (see Figure 1). Spherical product sur-
faces can be rescaled by a separate vector a,

a= a2 , by letting mh = ml(1) ,, h = a2h1(w)
Lad [a3 m2(?7)J La2 h2(

tnlm(,7) h, @
yielding.x=th ,3 h = a2 ml(,q) h2 (w)j.

Las m (?7)

The spherical product derives its name from the surface
of the unit sphere (Figure 2), which is produced when the
half circle

m(-7)= [c°s j71, -7r/2 c 1 s7r/2

is crossed with the full circle

h ( 'W) = [sin i]sr < < 87r;

L2=I (7)j 710 ` n I ,

the spherical product x = m E) h of the two curves is a sur-
face defined by

Fm, (?7) hi (W)1
x (00, w) = ml (?7) h2 (LOI CO<0 LO co I

_IM2 (71 _ q7 '< 1 <'q I

Geometrically, h(W) is a horizontal curve vertically
modulated by m(,q); ml(,q) changes the relative scale of
h, while m2 (,) raises and lowers it. 77 is a north-south
parameter, like latitude, whereas w is an east-west param-

Figure 1. A spherical cross-product: (a) this closed surface was formed
by crossing the vertical ellipse with a horizontal star shape (b).
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aicos cos - r/2e 7r/2
= a2cos sin )j- 7 <c3< lr

a3 sin I_

Hyperboloids of one sheet: (x,/a)2 + (X2/a2)2 - (X3/a3)2=

x(?, Lx) r[esec7 ]j r[ai cps (
-x(77w) La3 tan a2 csi wj

Faisec q cos -_ r/2 < q < ir/2
= a2sec n7 sin *- ,c < <r

La3 tan 7 _

Hyperboloids of two sheets: (x,/a,)2 - (x2/a2)2 - (x3/a3)2 =

x(m C) =[atn~sec
[a tsecw]

Figure 2. The sphere: n is the north-south parameter; co is
the east-west parameter.

[aI sec 71 sec w

= a2sec i7 tanw
tan I

- ir/2 < 7 < 7r/2
- 7r/2 < co < 7r/2 (sheet 1)

7r/2 < w < 37r/2 (sheet 2)

Fcos wlcoswl -ir/2 e
q
e 7r/2

i.e., x = m ® h =f cos1 sin w 7I < < 7r
Lsin~ J

The meridional half circle determines the radius of the
longitudinal full circle, and determines the height above
and below the X-Y plane.
The basic trigonometric forms of the standard quadric

surfaces are representable in this product form:

Ellipsoids: (x,/a,)2 + (x2/a2)2 + (x3/a3)2 = I

[cOSY 1
a,acosX0, w) = La3 sin (7 a2 sin

A torus may be thought of as an extended quadric sur-
face: (r-a)2= (x3/a3)2= 1

where r = J(xl/a,)2 + (x2/a2)2;
_ a(a+cosq)cosi

X(0, w) [a3sinc s] [ralsir = a2(a+cos-q)sinw
a3sinm7

where - ir < 7r
and -irew<7r.

The torus has the same trigonometric form as the ellip-
soid, except that the modulating function is offset by a
constant, and that i ranges over the full 360 degrees (see
Figure 3).
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Figure 3. Quadrics: ellipsoid (a), hyperboloid of one sheet (b), toroid (c), and hyperboloid of two sheets (d).

Tangent vectors and normal vectors are important geo-
metric entities associated with any three-dimensional sur-
face:

x = x (,q, w), where (?,)eD;

X', and xe,, are tangent to the surface x, and are used
to determine the local length scale along the curve

x = x (r7 (t), w (t)), to t 't

which is a curve lying in the surface x
Differential length is given by

ds = x ,±r+ x,,c dt, where= d/dt.

These differential lengths determine the size of the surface
patches used in the image. If both x ,7 and x are finite
and nonzero, the direction of the normal vector to the sur-
face is given by

n (r7,w) = x ,, A x,,;

i.e.,
X227 x3,@w - X3, X2,@

n X.- qX3, + x3,1 XI, .

XI ,q X2,@ - X2,,l XI,@

The unit normal N is obtained by dividing n by its mag-
nitude:

N (77, w) = n (,q, w) / n (77, w)

If x11 or x ,, are zero or infinite at a point x (,qo, wo), a
unique normal vector will exist only if the limit

lim
(77,CO) (-No, Wo)

x7 A X,

I A x

exists. This limit does not exist at a cusp in the surface (see
Figure 4). The primary application of the normal vector in
raster graphics is the calculation of the diffuse reflection
component of shading on an object, via Lambert's law:

I c f ( N * L ) = f(cos 0)
where L is a unit vector along the light ray; i.e., the shad-
ing contribution from different light sources depends on
the cosine of the angle between the light ray and the nor-
mal vector at that point on the surface. Another applica-
tion of the tangent and normal vectors is the normal
curvature K of the surface, which is calculated from a
curve, x (X1 (t), w (t)), embedded in the surface x (ij, co).

D *7 + 2 DI + D2C'2
K +

r2 + 2 F 1G,, + G ,,2
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Superquadrics in canonical positions

Superquadric solids are based on the four parametric
forms of the quadric surfaces, in which each trigonome-
tric function is raised to an exponent. In two dimensions
the sine-cosine curve

x = a cosl0
y = b sine o

or (x/a)2/E + (y/b)21e= 1

Figure 4. A shaded surface: more than one normal exists
at the cusp.

where D
DI
D2

N
N
N

and E = x,7*x-7
F = xv - xi,,
G = & * x(,,

In regions of higher curvature, more points are needed for
optimal sampling. In this way, the patches will smoothly
tile the surface of the object and avoid sharp angular
bends (see Figure 5).

is called a superellipse (see Figure 6a), while the secant-
tangent curve

x = a secE 0 or (x/a)2/E - (y/b)2/E = 1
y = b tanA0

-7r/2 sO < 7r/2, 7r/2 c 0 c 37r/2

is called a superhyperbola (see Figure 6b).
The spherical product of pairs of these types of curves

produces a uniform mathematical representation for the
superquadrics. The two exponents are squareness param-
eters; they are used to pinch, round, and square off por-
tions of the solid shapes, to soften the sharpness of
square, and to produce edges and fillets of any arbitrary
degree of roundness.

e < 1: shape is somewhat square.
e - 1: shape is round.
e- 2: shape has a flat bevel.
E> 2: shape is pinched.

Superquadrics are mathematical solids because (1)
their surfaces divide three-dimensional space into three
distinct regions: inside, outside, and surface boundary;
and (2) a well-behaved inside-outside function determines
the region in which an arbitrary point falls. For example,
the unit sphere

Fcos v cos a- r/2 r/2
x (77, w) = cos 7 sinw-

Lsin J-- 7r
-

w < 7r

Figure 5. Curvature-dependent sampling.
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(b)

Figure 6. Two-dimensional basis functions: superellipses
(a) and superhyperbolas (b). The shape progression is
square, round, bevel, and pinch as exponents increase
from 0 to 3.

(a)

has the inside-outside function

f (x, y, z) = x2 + y2 + z2.

(f(xo,yo, zO) =1, (xO,yO, zO) is on the surface.
If f(xo,Yo, Zo) > 1, (xo,yo, zo) lies outside the sphere.

tf(XO,YO,ZO) < l,(xo,yo,zo) lies inside the sphere.
Similar functions will be listed for all the superquadrics.
The bounding surface is not included in the solid

description of an object because two objects could inter-
sect solely at the boundary itself. In any solid modeling
scheme, no operation on a set of solids should yield a non-
solid result, like a point, curve, or surface.
A surprising result is that the superquadric normal vec-

tors lie on a dual superquadric form; that is, if the normal
vectors are translated to originate from a single point, a
second superquadric form is generated, whose own dual is
the original. (The unit normal vectors are then easily ob-
tained from these normal vectors.) The results are sum-
marized below.

Superellipsoids (see Figure 7).

Position vector of surface:

x (, )
=

l a, C,,

pa[11lCU '21-r2 c75 r2

=[a1 C,7ei Ex2 ,- c ir</2
La3 S SEi

E, is the squareness parameter in the north-south direc-
tion; E2 is the squareness parameter in the east-west direc-
tion. Cuboids are produced when both el and E2 are < 1.
Cylindroids are produced when E2 - and e- < 1. Pillow
shapes are produced when El- and E2 < 1 - Pinched
shapes are produced when either E, or E2 > 2. Flat-beveled
shapes are produced when either e, or E2 = 2.

Normal vector:

l/a, C,,2-E1 C 2]E2
n (0, ,) = 1/a2 C,,2 -El So22-e2

I /a3 S,722 J

Inside-outside function:

f(x,y,z) = ((x/a1)2/(2 + (y/a2)2/E2)E2 El + (z/a3)2/e,

Superhyperboloids of one piece (see Figure 8).
Position vector of surface:

x7)= [secia7e 71® [al SCJ21
- a3 tan"1 nJ L'2 S

ralsecdl,1C~21 - w/2 < n < ir/2
= Sa2 sec S1S2< , -7r < < 1r

a3 tane1 I

Figure 7. Superquadric ellipsoids. Exponents range from .3 to 3. The
north-south exponent, Fl, increases from top to bottom. The east-west
exponent, £2, increases from right to left.
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Figure 8. Superquadric hyperboloids of one sheet. Ex-
ponents increase as described in Figure 7.

Figure 10. Superquadric toroids. Exponents increase as
described in Figure 7.

a, sec', rq sec12
= a2 sec& 17 tanC2 wt

a3 tan', 71

- 7r/2
I
- ir/2

7r/2

Normal vector:
[I/a, sec2

n (i7, c) = I/a2 sec2-
I/a3 tan2

< 1 < 7r/2
< uj < 7r/2 (piece 1)
< w < 37r/2 (piece 2)

-1 77 sec2 - e2

-i 11 tan2 - E2

-1 1 _

Inside-outside function:

f (x,y,z) = ((x/a1)2/ 2 - (y/a2)2/ 2) 2 el - (z/a3)2/El

Supertoroids (see Figure 10).
Fa 1 a, C -,12

01 a_[4 +C,1CI ( a1 CJ2
La3 S,C J a2 Sw2

[a1 (a4 +

a2 (a4 +

La3 S

c I:) C E2I -7r C- 7 <1r

C77E ) SWE2 - 7r C- (. < 7r

Figure 9. Superquadric hyperboloids of two sheets. Ex-
ponents increase as described in Figure 7.

Normal vector:
[l/a, sec2 - 1 cos2 - C2

n (r0, w) = I/a2 sec2 Cj 7 sin2 e2c0
Li/a3 tan2- C1

Inside-outside function:

f(x,y,z) = ((x/a )2/E2 + (y/a2)2/E2)(2/1 -(z/a3 )2/El

Superhyperboloids of two pieces (see Figure 9).

Surface:

FsecCI 7 [Fajsecf2 w1

La3 tanr ?iLa2 tan'2c,o

la, C 72 - El CW2- e2
n 0, c) = l1a2 C,12-f, S ,2-C2

I/a3 S,22-E1

fl(x,y,z) = (((x/a1 )2/ 2+ (y/a2)2/C2) 2/22_ a4)2/f
+ Wza3)2/El

where a4 = d/V{a,12 + a22), and d is the torus radius. Note
that the dual of the normal vector is a degenerate torus,
different from the original.
The inside of each solid is given by f (x,y,z) < 1.
The surface is indicated by f (x,y,z) = 1.
The outside is indicated by f (x,y,z) > 1.

The existence of the inside-outside functions means
that superquadrics can be manipulated by means of solid
boolean operations, such as union, intersection, and sub-
traction (see Figure 11).
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Translation and rotation

The superquadric equations describe the solids in stan-
dard positions and orientations. It is usually necessary to
translate and rotate the objects to the desired configura-
tions. The rigid body transformations are invertible; thus,
the original inside-outside function can be used after a
function inversion. The manipulations on a solid operate
on --

a canonical surface, x = x (-q, w);
a normal vector, n = n (-, cil);
and an inside-outside function, f = f(x,y,z).
The translated and rotated solid S is given by

surface: x = Mx + b,
whereM is a rotation matrix, and b is a displacement vec-
tor,[ *

Lb,

b3__
normal: A = Mn.

The new inside-outside function is calculated by in-
verting the transformation and substituting into the old
inside-outside function; i.e., Figure 11. Solid modeling with superquadrics.

= f(x,y,z),
where

br n ^ nfrom its original orientation, without disturbing the angu-
lar relationship between the vectors in the bundle (see

I y g =Mt|y-b2 | Figure 12). The method simplifies the calculations for
LZG LZ-b3J normal and tangent vectors and can be used to preserve or

modify volume, surface area, or arclength. These are
Note that the inverse of the rotation matrix, M i, is the shear-free deformations; they are coupled to a local ex-

same as its transpose, Mt, because rotation matrices are
orthogonal. For a general transformation 3, the new sur-
face is defined by

x= (x)
and the new inside-outside function is defined by

f^() = f(3- I (xk))
over any domain for which the inverse transformation
3 -Iexists.

Superquadrics are mathematically quite simple, involv- a.
ing a few sines, cosines, and exponents. The ellipsoids and
toroids are bounded, simplifying the input schemes for
solid modeling. The control parameters affect global
properties of the shapes in a comprehensible manner, and
normal vector information is available continuously over
the surface, even across edges that are very square. The
solids can be easily modified by bending and twisting, and
have the potential to become widespread in three-
dimensional geometric design.

Angle-preserving transformations

This section explains a family of invertible transforms
developed to bend and twist mathematical objects in three
dimensions. At each point in a transformed object, the Figure 12. Progressive deformation of a rectangular flat sheet. Vector
bundle of embedded local vectors has been rotated away bundles are differentially rotated to produce the new forms.
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pansion coefficient to model the chief geometric charac-
teristics of flexible physical objects.
At any point x, the jacobian matrix J (x) for the

transform

y = F (x)
shall be a rotation matrix M (x), multiplied by an expan-
sion factor p (x):

J (x) = p (x)M (x)
In cartesian tensor notation, Jij =yij = p(x) mjj (x). Ex-
pansion is indicated whenp > 1, compression when p < 1.
Volume is conserved whenp = 1. x = x (71, w,) is a surface
to be transformed; the new tangent vectors Y, and y,, are
calculated by the chain rule from the old tangent vectors

x71and x,:

[*1
yX = J xt1 = pM x11 M x,7

y, = Jx, = pM X,, = M X ,

The direction of the normal vector on the surface , n(Y)
is calculated via the same transformation M, from the old
normal, n(X) on the surface x.

n(Y) = M n (x).

This result is derived as follows:

n(y) =y AyW
= Jxc AJx, = p2Mx7 AMxX

or

ni(y) p2EijkmjjxjnmkkXk,w-
Since [Eijk1 is an isotropic tensor,

mI filk = Eijk Mj;Mkk,
so

ni(y) = pI mi:, (-ikXjlm Xkw
= p2 mi, (XC7 A X@),
= p2 mi.nf(x)

0
Along any space curve

XI=x(s)IX x32(s) ' SO S CSi,
-X3 (5)

the transformed curve is given by

y (s) = j0. p(x(s) )M(x(s) )x'(s)ds.
This is the main transforming equation.

Example 1. Inextensible curves in two dimensions:

Starting with the curve

x = , s cL,
i.e., starting with a segment joining (0,0) and (L,O),
let

M(s) cosO(s) -sin 0(s) 1Lsin 6(s) cos O(s)J
The derivative is given by

x 0l
so

(s) s [cos 6(&) -sin 0(g) 11 d&J= [sin O(S) cosGO&AL0J
-° [:cos(s)1dSJ0Lsin OM~)

(d)

(e)

Figure 13. Deformations of a line segment: (a) a cornu spiral where 0 = .06 S2 - .1, (b) a sine-generated wave where 0 = cos s, (c) a
sine-generated wave where 0 = .25 cos s, (d) a circular segment where 0 = .5 s, and (e) a circular segment where 0 = .25 s. Equally
spaced rules on the curve indicate integer values of arclength s.
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T =tangent vector =Fos(s)1
Lsin O(s)J

N = unit normalvector = MFl - sin 0(s)1
LCos 0(s)J

Note thatT' [0(') 0 N.

Therefore, 0' is the curvature, K, of the curvey (s). 0' has
the appropriate sign (positive or negative) that maintains
N (s) as a continuous field of vectors. If curvature were

forced to be positive, there would be discontinuities in N,
which could be inconvenient in some modeling situations
(see Figure 13).
A circular deformation is produced when the curvature

K = 0' = constant = k. For this situation, 0 is a linear
function of arclength, s:

0 = ks + s5.

The radius of curvature is 1/k.
Inextensible coiled curves are produced by nonlinear

curves, 0 = 0 (s). 0 (s) and the resulting transformation
curves are shown in Figure 13. Curvature is high when 0'

is large. 0' can be used for curvature-dependent
algorithms to sample the curvey (s), as shown in Figure 5.

Example 2. Transformations of space curves:

X=

y(s) =fo_MMf [0 ds

The tangent vector T is the first column ofM, mji1. The
two other columns, Min2 and mJ3, are two mutually or-

thogonal vectors, N l and N 2, normal to the curve y (s).
N I andN 2 are not the normal vectorN and binormal vec-

tor B of the curve, although all four vectors lie in the
curve's normal plane; N I and N 2 are the two principal
normal vectors of the transformation M.
T, N l and N 2 can be used as a local vector coordinate

system (see Figure 14). The transformation coordinate
system (T , N l, N 2) changes its orientation along the
length of the curve trajectory. The angular velocity Q of
the transformation gives three curvature parameters in

terms of the local coordinate system, measuring bending
in three mutually perpendicular planes.However, the tor-
sion and curvature of the curve itself differ from the tor-
sion and curvature of the transformation, as can be seen

in the vertical line in Figure 14. The straight curve has
zero curvature and torsion, although the coordinate sys-
tem twists around it.
The differentiation rules are as follows:

T '1=13N1- 92N2

N 03=3T + OlN2

N 2 = Q2 T -12 N

where' = dids. Q may be computed by noting that

= N N '

Q2= T * N2Q2 N *_
1f23 = N, T'

The above differentiation rules for transformations
replace the Frenet-Serret formulas, which relate the
tangent, normal, and binormal vectors of curves to their
derivatives.

Frenet-Serret formulas:

T' =
N' =
B' =

K N
rB -KT

-TN
K iS curvature of the curve.
T is torsion of the curve.
K=N TT'
r=N B '

The equations coincide when Q2 = 0.

Note that

f23 02
N= N1- N2

X04222+ 232) X0f22+ 932)
and that K = V/ 222+ Q32).

Example 3. Transformations using the ZXZ euler rota-
tion matrix:
for the ZXZ euler rotation matrix produced by

l = k1 (s) : first rotation, around Z axis
02 = 02 (s) : second rotation, around X axis
43 = 43 (s) : third rotation, around Z axis

C3-S3l0 1[0 0 C1 -SI 01
M (S) =IS3 C3 0 0 C2 - S2 SI C1 0

O 0 1 LOS2 C2JL 0 1

where
[T (s), N1 (s), N2 (5)]

-CIC3 - SIC2S37
T (s) = CIS3 + SIC2C3

-SI S2 -

Figure 14. Orientation of the axes along the transformed curve.
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Figure 15. A set of transformation curves in a rectangular sheet.

S1C3 - CIC2S3
N, (s) = S1S3 + CiC2C3

CS2S

N2(s) = [S2C3
C2

where

S, = sin(¢, (s)) S2 = sin(o2(s)) S3 sin(k3(s))
C, = COS((1(s)) C2 = COS(02(s)) C3 = COS(¢3(3))

rQl - S3S21 - k2 C3
Q = 02 1= C3S2,1' -S302

_Q3 -C2S1' -03 _

M

Transforms of 3-D surfaces and solids

A surface or solid is transformed much in the same

manner as a space curve. First the object is broken down
completely into a set of disjoint curves x(s) (emanating
from a common origin), such that the union of the points
in the curves is equal to the set of points in the object (see
Figure 15). Each curve is transformed via the main trans-

forming equation,

x(s) = J x' (s)ds

to produce the transform of the object, x(s).
The integrand, however, must be an exact differential,

so that the results are independent of the integration path,
and so that the surface tangent and normal vectors may be
calculated using [ * ]. This consistency requirement is very
restrictive and, generally, difficult to satisfy. For in-
stance, the only nonrigid, solid-angle-preserving trans-
formations operate on spheres.
To ease these restrictions, a small expansion and shear

term is introduced. Volumetric and angular properties
will be conserved within a tolerance X. This is a realistic
approximation because most material solids and surfaces
stretch and shear to a small degree. To satisfy the con-

sistency requirement for the solids and surfaces, the
small, undetermined correction term, XQ, is introduced
to the jacobian matrix,

J = M + XQ, where det (Q) = 1.

Figure 16. Potential design applications.
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The transformation becomes

i(s) =(M + XQ)x' ds

~~= (T + AQ)dx + (N1 +)XQ2)dy + (N2 + IQ3).
For the integrand to be an exact differential

(T +\Q )x = (N I + XQJ)5
(T + )Q ), = 1N 2 +'XQ3)y

using the differentiation rules for T, N,, and N2, we obtain

-02(Y) N2 + Q3(Y) N i + XQ3,y
- Q3(X) T + £(X) N2 + XQ2,x

and other similar relations involving 52 and X. These rela-
tions are satisfied to order X if all of the curvatures Q, are
of order X, and the derivatives ofQ are of order l.

I + X is an upper limit on the expansion factor, because
IM + XQjc |M) +XQ1 = I + X.

Using the ZXZ euler rotation matrix, all of the preceding
relations will be satisfied to order X if, for each of the
angles 1, 02, and 03,

ax 1+l ~y I + l-If < A

In other words, for small deformation rates, the volume
or surface area of the object is preserved locally within a
factor of I + X.

Superquadrics generalize the basic quadric surfaces
and solids, producing a continuum of useful forms with
rounded edges and filleted faces. Angle-preserving trans-
formations operate on a predefined surface or space
curve, bending and twisting the object into a new form.
Together, the new primitives and operators have poten-
tial design applications wherever flexible operations are
needed, or where volume, surface area, or arclength must
be conserved (see Figure 16). They provide a powerful ex-
tension to the classical design shapes. -
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