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Abstra
tPart 1: Known Constru
tions. About 40 pages of histori
al survey of thesubje
t of hypersurfa
es with many singularities 
onstitute the �rst part of thepresent work. We hope that this overview will not only serve as an introdu
torytext and a guide to the literature, but that it will also give the reader some newideas and referen
es to interesting arti
les whi
h might serve as a starting pointfor further resear
h. To make this easier, we do in fa
t not only summarize knownresults, but we also give some dire
t generalizations and 
on
rete examples whi
hhave not been 
onsidered so far.Part 2: New Constru
tions and Algorithms. The main part of this thesisis devoted to new 
onstru
tions. First, we prove the existen
e of hypersurfa
es ofany given degree d in Pn with many Aj-singularities based on the theory of dessinsd'enfants (
hapter 5). This yields new asymptoti
 lower bounds in most 
ases. Our
onstru
tion is a variant of the well-known 
onstru
tion of Chmutov from 1992. Inthe real 
ase, we are able to prove an upper bound whi
h shows that a real variantof Chmutov's 
onstru
tions is in some sense asymptoti
ally the best possible one.In low degree, it is usually possible to obtain better results than those given bythe general 
onstru
tions and upper bounds. As des
ribed in the histori
al survey,all known 
onstru
tions use ni
e geometri
al arguments and symmetry to redu
ethe problem at hand to a solvable one. In this thesis, we give several algorithmi
approa
hes whi
h do either work without su
h an intuition or use experiments overprime �elds whi
h repla
e the intuition. Our method whi
h uses the geometry ofprime �eld experiments allows us to 
onstru
t a septi
 in P3 with 99 real nodes in
hapter 8 whi
h improves Chmutov's re
ord, 93.We then des
ribe an algoritm whi
h is even stronger. It redu
es the 
onstru
tionof surfa
es of degree d ≤ 7 with the greatest known number of nodes to a short
omputer algebra 
omputation. We 
an even apply it to higher degree: For d = 9we obtain a surfa
e with 226 nodes whi
h also improves Chmutov's 
urrent re
ord,
216. This algorithm 
an 
ertainly be applied to many other 
on
rete problems inalgebrai
 geometry.Part 3: Visualization. Many interesting examples of the subje
t are de�nedover the real numbers. Thus, we are quite often in a position that allows us to usevisualization of singular surfa
es. For several years there already exists softwarewhi
h produ
es ni
e images, e.g. Endraÿ's surf. Based on these existing programswe developped some tools allowing a dynami
al experien
e of algebrai
 
urves andsurfa
es: Spi
y, surfex, and surfex.lib. We demonstrate their usefulness in thelast part of this work. Our example is the 
onstru
tion of ni
e equations for all 45topologi
al types of real 
ubi
 surfa
es in proje
tive three-spa
e whi
h is one of themost 
lassi
al subje
ts in algebrai
 geometry.v
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A 
one, a quadri
 surfa
e with the simplest type of singularity: a node, also 
alledordinary double point or A1-singularity. How many nodes 
an a surfa
e of degree
d in P3 have?



Introdu
tionThe ProblemThe Most General Question. A generi
 hypersurfa
e of degree d ∈ N in
Pn := Pn(C) is smooth. Thus, it is natural to ask:Question 0.1. Whi
h 
ombinations of singularities 
an o

ur on a hypersurfa
ein Pn of given degree d?It is easy to answer this question for d = 1, 2. It is obvious that a hyperplane(d = 1) 
annot have any singularity. It is also easy to 
lassify quadri
s (d = 2) w.r.t.the singularities o

urring on them. E.g., a quadri
 in Pn 
an 
ontain at most oneisolated singularity. This 
an only be an ordinary double point.In Pn, n ≤ 3, it is also possible to treat the 
ases d = 3, 4: For the 
ubi
surfa
es in P3 all possible 
ombinations of singularities are known sin
e S
hlä�i'swork in 1863 (see se
tion 1.1 on page 13). All possible 
ombinations of singularitieson quarti
 surfa
es (d = 4) in P3 are also known; the last remaining open questionshave been answered in 1997 using 
omputers (see se
tion 4.8 on page 53).The Question on the Maximum Number. At the moment, the answer tothe previous question seems unrea
hable if d ≥ 5 or n ≥ 4. In the present work, wethus 
onsider the slightly simpler problem:Question 0.2. What is the maximum number µn(d) of isolated singularitieson a hypersurfa
e of degree d in Pn?We have already seen that this is easy if d = 1, 2: µn(1) = 0 and that µn(2) = 1for all n. On the other hand, the maximum number µ2(d) of isolated singularitieson a plane 
urve in P2 is (

d
2

), established by d general lines.In higher dimensions, there is no su
h result known yet. In fa
t, a dire
tanalogue 
annot exist in Pn, n ≥ 3, be
ause in this 
ase a hypersurfa
e with onlyisolated singularities has to be irredu
ible. It is also well-known that an irredu
ibleplane 
urve of degree d with k nodes exists if and only if 0 ≤ k ≤ 1
2 (d − 1)(d − 2)(see [Sev21, p. 329℄ for a 
lassi
al exposition). However, in higher dimensions thisquestion turned out to be a hard one: Despite many e�orts, µ3(d) is only known for

d ≤ 6 until now. If we ask for the maximum number of singularities of some giventype (di�erent from nodes, e.g. 
usps), the question is still open in general, even inthe 
ase of plane 
urves we only know the answer for low degrees.The aim of the present work is to improve the knowledge around the questionsabove. Our fo
us is on the geometry and equations of the hypersurfa
es and methodsfor 
onstru
ting interesting examples. Note that in prin
ipal, for ea
h d there is analgorithm whi
h 
omputes the surfa
es of degree d with the maximum number ofnodes. But this involves very large systems of non-linear equations and 
an onlybe performed in spe
ial 
ases. We work out su
h an example in 
hapter 7. In more
ompli
ated 
ases, we need other ideas. 1



2 INTRODUCTIONSome NotationSingularities. A point p ∈ Cn is 
alled a singular point (or singularity) of thehypersurfa
e f ∈ C[x1, x2, . . . , xn] if f(p) = 0 and ∂f
∂xi

(p) = 0 for all i = 1, 2, . . . , n.It is 
alled isolated if there exists an open neighborhood of p whi
h does not 
ontainany other singular point. This is equivalent to dim (C[x1, x2, . . . , xn]/(f, Jf)) < ∞,where Jf := ( ∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

) denotes the Ja
obian ideal .Most of the time, we will only deal with a spe
ial kind of isolated singularities,so-
alled double points : Let f ∈ C[x1, x2, . . . , xn] de�ne an isolated hypersurfa
esingularity (also 
alled f) at the origin of Cn. If the tangent 
one t
(f) � i.e. thehomogeneous part of f of the lowest degree � has degree two then the singularityis 
alled a double point .An ordinary j-tuple point in Cn is an isolated singularity in Cn whi
h is lo
allya 
one over a smooth hypersurfa
e of degree j in Cn−1. An ordinary double point isalso 
alled (ordinary) node or A1-singularity. This is equivalent to the property thatthe hessian � i.e. the determinant of the matrix of se
ond order derivatives of f �does not vanish at the singular point. It is also equivalent to the property that f 
anbe written in the form x2
1+x2

2+· · ·+x2
n in some lo
al 
oordinates at the origin. Moregenerally, f is an Aj-singularity if it 
an be written in the form xj+1

1 +x2
2 + · · ·+x2

nin some lo
al 
oordinates at the origin. We 
all an A2-singularity an (ordinary)
usp and an A3-singularity a ta
node. See, e.g., [AGZV85a, AGZV85b, Dim87℄for more information on singularities.The Maximum Numbers of Singularities. The maximum number of iso-lated singularities of some given type on hypersurfa
es in some proje
tive spa
ewill appear throughout this work in di�erent situations. To 
larify whi
h maximumnumber we mean, we will use di�erent notations for ea
h of these: Let d ∈ N, n ∈ N.Let T be a type of an isolated hypersurfa
e singularity in Cn (e.g., T = A1, A2, D4).Then:
• µn(d) denotes the maximum number of singularities a hypersurfa
e ofdegree d in Pn 
an have.
• µn

T (d) denotes the maximum possible number of singularities of type T ona hypersurfa
e of degree d in Pn whi
h has only singularities of type T .E.g., µ3
A1

(d) is the maximum number of nodes whi
h a nodal surfa
e in
P3 
an have.

• Many results hold for hypersurfa
es of degree d in Pn with only rationaldouble points as singularities. We thus introdu
e the notation: µn
Dp(d).

• We will need similar notations for other 
lasses of singularities, e.g. µn
A(d)for the maximum possible number of Aj-singularities.

• By µn
j (d) we denote the maximum number of ordinary j-tuple points ahypersurfa
e of degree d in Pn 
an have. E.g., µ5

3(d) is the maximumnumber of ordinary 5-tuple points a surfa
e in P3 
an have.Our main obje
t of study are hypersurfa
es in P3, so we write µ(d) := µ3(d),
µT (d) := µ3

T (d), et
. for short. For a given hypersurfa
e f in Pn whi
h has onlyisolated singularities we use similar notations. E.g., µ(f) denotes the number ofsingularities and µA1
(f) the number of nodes of f .As already mentioned, these maximal numbers are only known in very few 
ases.Thus, upper and lower bounds for them will o

ur frequently in the main text. Thereare some obvious inequalities for n, d ∈ N: µn(d) ≥ µn

A(d) ≥ µn
A1

(d). But noti
e



MAIN RESULTS 3that it is not known if µn
A1

(d) = µn(d). I.e., it is not known if the maximum numberof singularities 
an be a
hieved with only ordinary double points.Symmetry. Most of the examples whi
h we will en
ounter are symmetri
 inthe following sense: If a group G a
ts on Pn(C) then a hypersurfa
e in Pn(C) whi
his given by a homogeneous polynomial f ∈ C[x0, . . . , xn] is 
alled G-symmetri
 if
f is G-invariant, i.e. if f ∈ C[x0, . . . , xn]G.Noti
e that it is not known if the maximum number of singularities µn(d) ona hypersurfa
e of degree d in Pn 
an always be realized by an example whi
h is
G-symmetri
, where G is not the trivial group. Nevertheless, for studying hyper-surfa
es with many singularities, we will often have to restri
t ourselves to hyper-surfa
es whi
h are G-symmetri
 for some non-trivial �nite group G.Main ResultsMost of the results presented in this Ph.D. thesis have already appeared aspreprints on arXiv.org [Lab04, Lab05a, Lab05b, BLvS05℄, some others are al-ready published or a

epted for publi
ation [LvS03, HL05℄. The present workpla
es them in a bigger framework and gives some additional information and re-sults.The previously unpublished 
ontent in
ludes in parti
ular a large histori
alsurvey on known 
onstru
tions and a new algorithm. This algorithm is 
ertainlythe most important result of this thesis: It redu
es all known 
onstru
tions of nodalsurfa
es of degree d ≤ 8 with the maximum known number of nodes to a 
omputeralgebra 
al
ulation (see part2, 
hapter 9), and also yields the new results µ(7) ≥ 99,
µ(9) ≥ 226.Part 1: Known Constru
tions. The subje
t of hypersurfa
es with manysingularities has a long and ri
h history whi
h started with the 
lassi�
ation of thesingular 
ubi
 surfa
es by S
hlä�i in 1963. In our opinion, it is ne
essary to knowthese developments if one really wants to understand the ideas behind our new
onstru
tions whi
h form the main part of our work.We thus start with a histori
al overview of the subje
t. In fa
t, we go slightlybeyond this and give some obvious generalizations and detailed studies in 
ases inwhi
h it seems appropriate to us. E.g., equation (2.9) whi
h follows from Gallarati'sgeneralization of B. Segre's ideas shows that the maximum number µA2

(6) of 
uspson a sexti
 is greater or equal to 36 whi
h is a fa
t that has been overlooked forsome time. Another example is our 
on
rete 
omputation of Var
henko's spe
tralbound in the 
ase of Aj -singularities (se
tion 3.7). This leads to an interpretationof this bound as so-
alled o
tahedral numbers in the 
ase j ≥ 2d− 1 (se
tion 4.13).Part 2: New Constru
tions and Algorithms. Our main results are 
on-tained in the se
ond part of this thesis. Therein, we present some new 
onstru
tionsof hypersurfa
es with many singularities whi
h lead to new lower bounds for themaximum number µn
T (d) of singularities of type T on a hypersurfa
e of degree din Pn in many 
ases. In our opinion, the methods used for these 
onstru
tions areof independent interest themselves be
ause they 
an 
ertainly be applied in manyother situations.At �rst sight, our most important result is 
ertainly the 
onstru
tion of a surfa
ein P3 with 99 nodes (
hapter 8) whi
h shows:

99 ≤ µ(7) ≤ 104.



4 INTRODUCTIONThis is the �rst 
onstru
tion of odd degree d > 5 whi
h ex
eeds the general lowerbound given by Chmutov in 1992. After Chmutov's dis
overy there appeared sur-fa
es with more nodes for d = 6, 8, 10, 12. These were found by taking a familyof surfa
es whi
h depends on some parameters and ea
h of whose members wasinvariant under some large symmetry group. The symmetry redu
ed the numberof free parameters drasti
ally, and it was possible to determine these using othergeometri
al arguments.In large odd degree the only useful symmetry one 
an impose seems to be di-hedral symmetry, i.e. the symmetry of the d-gon. But this kind of symmetry isessentially two-dimensional and thus leaves us with many parameters. The bestway to solve this problem seems to guess some additional geometri
 properties ofthe hopefully existing surfa
e with many singularities � but how? Our idea is touse experiments over prime �elds to get these ideas. Based on these additional geo-metri
al properties, it is then not very di�
ult to use 
omputer algebra to eliminateall free parameters.In some 
ases, it is even possible to solve the problem 
ompletely algorithmi-
ally. Either by dire
tly working in 
hara
teristi
 zero and using elimination andprimary de
omposition (
hapter 7), or by lifting the prime �eld parameters to 
har-a
teristi
 zero using the 
hinese remainder theorem together with a rational re
overyalgorithm (
hapter 9). Indeed, we implemented the latter algorithm as a Singularlibrary 
alled sear
hInFamilies.lib. Using this, it is a triviality to reprodu
e the
onstru
tions of all known re
ords for µA1
(d) for d ≤ 7, even our own one for septi
s.When applying it to the next interesting 
ase whi
h is d = 9 we obtain a noni
 with

226 nodes whi
h shows:
226 ≤ µ(9) ≤ 246.Our algorithm is very general so that it 
an 
ertainly be applied to many other 
on-
rete problems in algebrai
 geometry. In our opinion, all this makes the developmentof this algorithm the most important result of this thesis.But we do not only des
ribe algorithmi
 ways to 
onstru
t some spe
ial ex-amples. We also give a general 
onstru
tion of hypersurfa
es in Pn with many

Aj-singularities whi
h does not use 
omputers at all (
hapter 5). It is based onChmutov's well-known 
onstru
tion of nodal hypersurfa
es. Our proof uses the so-
alled Dessins d'Enfants. The numbers of Aj-singularities of our examples ex
eedthe known lower bounds in most 
ases. E.g. in P3, we get:
µAj

(d) '
3j + 2

6j(j + 1)
d3, j ≥ 2.In Pn, n ≥ 5, our examples even improve the lower bounds in the nodal 
ase slightly.We then make a short ex
ursus to the world of real algebrai
 geometry (
hapter6). We use a relation to the theory of real line arrangements to show that thenumbers of nodes of Breske's real variants of Chmutov's surfa
es are in some senseasymptoti
ally the largest possible ones. This 
on�rms a 
onje
ture of Chmutov inthe spe
ial 
ase of real line arrangements.Summarizing, we get table 0.1 on the fa
ing page whi
h gives the best knownlower and upper bounds for the maximum number µAj

(d) of Aj -singularities on asurfa
e of degree d for j = 1, 2, 3, 4.We mark those 
ases in bold in whi
h our 
onstru
tions improve (to our knowl-edge) the previously known lower bounds. For j ≥ 2 and d ≥ 5, all best knownlower bounds are either attained by our examples from 
hapter 5 or by Gallarati'sgeneralization of B. Segre's idea whi
h we work out in detail in se
tion 2.5. The



MAIN RESULTS 5
@

@j d 3 4 5 6 7 8 9 10 11 12 d

1 ��44 ��1616
��3131

��6565
��10499

��174168
��246226

��360345
��480425

��645600 ≈ ��4/95/12 · d3

2 ��33 ��88 ��2015
��3736

��6252
��9870

��144126
��202159

��275225
��363300 ≈ ��1/42/9 · d3

3 ��11 ��66 ��1310
��2615

��4431
��6964

��10272
��144114

��195140
��258198 ≈ ��8/4511/72 · d3

4 ��11 ��44 ��1110
��2015

��3521
��5432

��8054
��112100

��152110
��201132 ≈ ��5/367/60 · d3Table 0.1. An overview of our main results on the lower/upperbounds for the maximum possible number of Aj-singularities onsurfa
es in P3. The bold numbers indi
ate the 
ases in whi
h thepresent work improves the previously best known lower bounds.
onstru
tions for the other surfa
es rea
hing the best known lower bounds in thenodal 
ase (i.e., j = 1) are brie�y des
ribed in our histori
al survey (part 1).Part 3: Visualization. If a surfa
e with many singularities is de�ned overthe reals then it is sometimes ni
e to have a pi
ture of it. But this is not the onlyreason why one would like to have good visualizations of singular surfa
es: In thelast part of this thesis we show how to use our visualization tools Spi
y and surfexto 
onstru
t good equations for all 45 topologi
al types of real 
ubi
 surfa
es withonly rational double points. Furthermore, in many 
ases visualization is a very goodtool to understand the geometry of some 
onstru
tions in an intuitive way. Andthis 
an help to 
onstru
t new intesting examples based on these known ones.All pi
tures of algebrai
 surfa
es in this thesis were produ
ed using our Singu-lar library surfex.lib. This is a Singular interfa
e for our tool surfex whi
halso adds some features, e.g. the ability to draw one-dimensional real parts of sur-fa
es whi
h are not 
ontained in the real two-dimensional 
omponent.







Figure on the pre
eding pages: Barth's 345-nodal i
osahedral-symmetri
 de
ti
from 1996. Like his famous 65-nodal sexti
, Barth 
onstru
ted it by studying aone-parameter family of symmetri
 surfa
es. See [Lab03a℄ for more images andmovies of algebrai
 surfa
es.



Part 1Known Constru
tions





INTRODUCTION 11Introdu
tionIn this histori
al overview, we present the work on the question on the maximumnumber of singularities on a hypersurfa
e of degree d in Pn := Pn(C) whi
h hasbeen done before the appearan
e of the present work. We try to mention all majorresults on the subje
t. It is 
lear that we 
annot go into the details at many pla
es.In view of our main results 
ontained in the other parts of this thesis, our fo
us willbe on the geometry and equations of the hypersurfa
es.Some very brief survey arti
les have already appeared on surfa
es with manysingularities (e.g., [Tog50℄, [Gal84℄, [End95℄). Ours aims to be a bit more exhaus-tive in two senses: First, we do not only mention very few important results; se
ond,we do not only summarize the ideas, but we also give some natural generalizationsand 
on
rete examples. An example is our 
on
rete 
omputation of Var
henko'sspe
tral bound in the 
ase of Aj-singularities (se
tion 3.7). This leads to an in-terpretation of this bound as so-
alled o
tahedral numbers in the 
ase j ≥ 2d − 1(se
tion 4.13).Another aim of this survey is to give geometers who want to 
onstru
t newexamples of hypersurfa
es with many isolated singularities a kind of en
y
lopediaat hand whi
h one 
an use to get new ideas or to 
ombine and improve old ones. Atthe same time, it 
an serve as a guide to the literature whi
h tries to be as 
ompleteas possible. Beside this, we want to point out some of the interesting histori
aldevelopments by presenting this overview in (more or less) 
hroni
al order and byindi
ating the relations between the 
onstru
tions as often as possible.Our summary is devided into four parts ea
h of whi
h starts with a shortintrodu
tion. This might be parti
ularly helpful for an impatient reader who justwants to get a very short overview. Finally, we want to mention that the largenumber of papers on the subje
t in van Straten's library and one of his unpublishednotes have proven to be quite useful as a starting point for our work.



A 16-nodal Kummer surfa
e. In 1864, Kummer noti
ed that Fresnel's wave surfa
ehad 16 nodes and that this was indeed the maximum possible number of nodes ona quarti
 surfa
e in P3.



CHAPTER 1The Important First Steps (until 1915)After the trivial 
ases of degree d ≤ 2, the �rst interesting 
ase is the one ofsurfa
es of degree three, the so-
alled 
ubi
 surfa
es. These were already 
lassi�edwith respe
t to the singularities o

uring on them in 1863 by S
hlä�i. Only oneyear later, Kummer noti
ed that the maximum number of isolated singularities ona quarti
 was 16.In the following years, several interesting 
onstru
tions and upper bounds ap-peared in
luding Rohn's 
onstru
tion of surfa
es of degree d with ≈ 1
4d3 nodes andBasset's upper bound µDp(d) / 1

2d3 for the maximum number of double points on asurfa
e of degree d. Also, the �rst nodal hypersurfa
es in higher dimensions showedup, but mainly as a tool for understanding surfa
es in P3 in a better way.1.1. Cubi
 Surfa
esOne of the �rst major a
hievements on algebrai
 surfa
es was Cayley's andSalmon's observation in 1849 that a smooth 
ubi
 surfa
e 
ontains lines exa
tly 27lines [Cay49℄. In fa
t, they also noti
ed [Sal49b℄ that there are still 27 lines when
ertain singularities o

ur if the lines are 
ounted with the 
orre
t multipli
ity. Theautomorphism group of the 
on�guration of the 27 lines 
ontains the simple groupof order 25920 as an index two normal subgroup. This 
on�guration and the groupplayed an important role in the development of group theory until the end of the
19th 
entury. See, e.g., Di
kson's book [Di
01, 
hapter XIV, p. 292-298℄.1.1.1. S
hlä�i's Classi�
ation. Shortly after this dis
overy, S
hlä�i pre-sented the 
lassi�
ation with respe
t to the singularities and the reality of the lines[S
h63℄ (see also [S
h58℄ and [Cay69℄). This very expli
it arti
le also 
ontainsmany (proje
tive) equations, e.g. of the four-nodal 
ubi
 surfa
e(1.1) Cay3 :=

1

x0
+

1

x1
+

1

x2
+

1

x3
= 0whi
h is nowadays often 
alled Cayley Cubi
 (�g. 1.1 on the next page). To ourknowledge, it is not 
lear who �rst dis
overed its existen
e, but Cayley was 
ertainlyone of the �rst to know it. Any four-nodal 
ubi
 is proje
tively equivalent to thisone. Another ni
e equation of this 
ubi
 is the following (
ompare also (1.5)):(1.2) Cay3 : x3

0 + x3
1 + x3

2 + x3
3 +

1

4
x3

4 = 0, x0 + x1 + x2 + x3 + x4 = 0.In 
hapter 12 on page 141 we give expli
it a�ne equations and images for all realtopologi
al types of 
ubi
 surfa
es.The 
lass d∗(f) of a surfa
e f of degree d is the number of tangen
y points fhas with a generi
 pen
il of hyperplanes (see e.g., [BW79, se
tion 3℄). This numberis also the degree of the dual surfa
e f∗ of f . A smooth surfa
e of degree d has
lass d(d − 1)2. In the times of S
hlä�i's work mentioned above, it was well-known13



14 1. THE IMPORTANT FIRST STEPS (UNTIL 1915)
Figure 1.1. The four-nodal Cayley Cubi
 with the a�ne equation:
4(x3 + 3x2 − 3xy2 + 3y2 + 1

2 ) + 3(x2 + y2)(z − 6)− z(3 + 4z + 7z2).It 
ontains exa
tly three lines of multipli
ity one and six lines ofmultipli
ity four.(apparently due to Salmon [Sal47℄, [Sal49a℄, using results of Pon
elet [Pon29,�93℄, see also [Sal80℄) that ea
h singularity of type Aj of f diminishes the 
lass by
j+1 ≥ 2 whi
h gives: d∗(f) ≤ d(d−1)2−2µA(f), where µA(f) denotes the numberof Aj-singularities of f . It was also well-known that for a surfa
e of degree d ≥ 3we have d∗(f) ≥ 3. This yields:(1.3) µA(d) ≤ 1

2

(
d(d − 1)2 − 3

)
.

d 1 2 3 4 5 6 7 8 9 10 11 12 d

µA(d) ≤ 0 1 4 16 38 73 124 194 286 403 548 724 ≈ 1
2d3Together with the existen
e of the four-nodal 
ubi
 (1.1) we get:(1.4) µ(3) = µA(3) = µA1

(3) = 4.Knowing that a 
usp (i.e., an A2-singularity) redu
es the 
lass by 3, the pre
ed-ing bound 
an be used to show that the maximum number of 
usps is 3. For highersingularities this te
hnique is not su�
ient. E.g., it does not give any reason forthe non-existen
e of a 
ubi
 with an A8-singularity. In [S
h63℄, S
hlä�i presents amore detailed study of the geometry of Aj-singularities to show that they only existon 
ubi
 surfa
es for j ≤ 5.1.1.2. Further Results. There are several other important works on 
ubi
surfa
es whi
h also in�uen
ed the theory of hypersurfa
es with many singularities.E.g., Clebs
h's arti
le [Cle71℄ whi
h 
ontains the des
ription of his famous DiagonalCubi
 Surfa
e in P3 with 27 real lines, see �g. 1.2 on the next page. It is given by
utting a Σ5-symmetri
 hyper
ubi
 with a Σ5-symmetri
 hyperplane in P4:(1.5) Cle3 : x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0, x0 + x1 + x2 + x3 + x4 = 0.Although this surfa
e is smooth it will appear again in subsequent se
tions.Klein's arti
le [Kle73℄ was probably one of the �rst appli
ations of deformationtheory to algebrai
 surfa
es: Starting from a 
ubi
 surfa
e with four nodes he
onstru
ted the other topologi
al types of 
ubi
 surfa
es by deformations. For are
ent detailed 
lassi�
ation of real 
ubi
 surfa
es with singularities, see [KM87℄.



1.2. KUMMER QUARTICS 15
Figure 1.2. The Clebs
h Diagonal Cubi
. We 
opied the equationfor this a�ne view from a Surf s
ript of S. Endraÿ. In (1.5) herepla
ed the xi by the tetrahedral 
oordinates y0 = 1− x2 −

√
2x0,

y1 = 1 − x2 +
√

2x0, y2 = 1 + x2 +
√

2x1, y3 = 1 + x2 −
√

2x1.1.1.3. Models of Surfa
es. The algebrai
 geometers of the 19th 
entury didnot only des
ribe abstra
t properties of 
ubi
 surfa
es. They were also interestedin the intuitive understanding of their geometry. Clebs
h was probably the �rstwho suggested to 
onstru
t a real world (plaster) model of a 
ubi
 surfa
e. At hissuggestion, Wiener produ
ed su
h a model of the Clebs
h Diagonal Cubi
 in 1869.Together with some other models, it was presented at several exhibitions in theworld. Other well-known series of models were produ
ed by Klein and Rodenberg(see [Rod04℄ and [Rod79℄). For more re
ent works 
on
erning real-world models,see [Fis86, Kae99℄ and 
hapter 11.1.2. Kummer Quarti
sOnly one year after S
hlä�i's 
lassi�
ation of the 
ubi
 surfa
es, Kummer stud-ied quarti
s with the maximum number of singularities systemati
ally. In [Kum75a℄he remarked in 1864 that Fresnel's Wave Surfa
e was an algebrai
 surfa
e of degree
4 
ontaining 16 nodes. This 
lassi
al surfa
e was dis
overed in 1819 during Fresnel'sstudies on 
rystal opti
s and his ideas of a wave theory of light (see [OR℄ for morebibliographi
al information). The equation of Fresnel's Wave Surfa
e presented in[Sal80℄ as an example of a quarti
 derived from an ellipsoid (see �g. 1.3 on thefollowing page) is:Fresa,b,c :=

(
(x2(R2 − b2)(R2 − c2)

)
+

(
y2(R2 − a2)(R2 − c2)

)

+
(
z2(R2 − a2)(R2 − b2)

)
− (R2 − a2)(R2 − b2)(R2 − c2),where R2 := x2 + y2 + z2 and the 
onstants a, b, c ∈ C 
an be 
hosen arbitrarily.Kummer also noti
ed in [Kum75a℄ that 16 was the maximum possible numberof singularities on a quarti
 � using the reasoning (1.3) based on the upper boundfor the 
lass. This showed:(1.6) µ(4) = µA(4) = µA1
(4) = 16.His systemati
 treatment of all 16-nodal quarti
s in [Kum75a℄ and [Kum75b℄ isthe reason why su
h surfa
es are nowadays 
alled Kummer Surfa
es. We 
opied a



16 1. THE IMPORTANT FIRST STEPS (UNTIL 1915)slightly adapted version of Kummer's equation given in [Kum75b℄ from a Singu-lar s
ript of S. Endraÿ, see �g. 1.3 for a pi
ture:(1.7) Kuµ :=
(
x2 + y2 + z2 − µ2

)2 − λ y0 y1 y2 y3,

λ = 3µ2−1
3−µ2 , µ ∈ C,where the yi are the tetrahedral 
oordinates already used for Clebs
h's DiagonalCubi
 in �g. 1.2 on the pre
eding page. A very ni
e book on the Kummer quarti
was written by Hudson [Hud90℄ a few years later. Another famous monograph onsingular quarti
 surfa
es is [Jes16℄.

Figure 1.3. Fresnel's Wave Surfa
e Fres1, 3
10

, 1
2
of 1819 has 16nodes only four of whi
h are real. Kummer's tetrahedral-symmetri
Surfa
e Ku1.3 of 1864, instead, has 16 real nodes.1.3. Rohn's Constru
tion of Quarti
s with 8�16 NodesIn [Roh86℄, Rohn studied quarti
s with 8�16 nodes in a systemati
 way byexamining the sexti
 plane 
urve obtained as the bran
h lo
us of the proje
tion ofthe quarti
 to a plane. The 16-nodal Kummer quarti
 
orresponds to the 
ase inwhi
h the sexti
s fa
tors into six straight lines.One of his equations of the 12-nodal quarti
 is still one of the most importantmethods for �nding surfa
es with many singularities as we will see later. Fig. 1.4on the next page illustrates the idea for 
urves with A2-singularities. Rohn's 
ase ofa quarti
 with 12 nodes involved four planes and a smooth quadri
 instead of linesand 
ir
les, see �g. 1.5 on the fa
ing page.I am indebted to Viat. Kharlamov who informed me of the fa
t that this ideais 
ontained in Rohn's arti
le (and is probably even older, 
ompare e.g. S
hlä�i'sarti
le [S
h63℄). All arti
les of the se
ond half of the 20th 
entury known to usattribute this 
onstru
tion to B. Segre, see se
tion 2.2. A reason for this might bethat in his famous book on singular quarti
 surfa
es [Jes16℄, Jessop attributes thesystemati
 treatment of quarti
s with many nodes to Rohn, but he neither gives areferen
e to Rohn's arti
le [Roh86℄, nor explains this 
onstru
tion expli
itly.For the more general 
ase of degree d, Rohn's 
onstru
tion (he only dis
ussesthe spe
ial 
ase d = 4) 
an be des
ribed as follows: d general hyperplanes li in P3interse
t in (

d
2

) lines whi
h meet a general surfa
e q of degree ⌊d
2⌋ in (

d
2

)
⌊d

2⌋ ≈ 1
4d3points. Thus, the surfa
es(1.8) Rod :

d∏

i=1

li − q2 = 0
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x3 = 0, y2 = 0 x3 − y2 = 0

x2 = 0, (x + y)2 = 0, (x − y)2 = 0, (
x2 · (x + y)2 · (x − y)2

)

(x2 + y2 − 1)3 = 0 − (x2 + y2 − 1)3 = 0Figure 1.4. Globalizing the lo
al equation of a singularity.
E1,2,3,4 := Q := E1,2,3,4 − Q2

(x − y)(x + y)(y − z)(y + z), (x2 + y2 + z2 − 1),Figure 1.5. Rohn's 12-nodal surfa
e [Roh86, p. 33℄ 
onstru
tedby globalizing the lo
al equation of a node.have (
d
2

)
⌊d

2⌋ =

{ 1
4d3 − 1

4d2, d even
1
4d3 − 1

2d2 + 1
4d, d odd nodes.1.4. Basset's Upper Bound for Surfa
esBesides these 
onstru
tions there also appeared new upper bounds. In 1906,Basset [Bas06a℄, [Bas06b℄ improved the bound (1.3) for the maximum numberof isolated double points on a surfa
e f of degree d in P3. But the approximatebehaviour did not 
hange: µDp(d) / 1

2d3. Basset's idea was to proje
t a nodalsurfa
e f of degree d and 
lass d∗ in P3 from a general point. This yields a (d− 2)-fold 
overing f → P2 rami�ed along a plane 
urve C of degree d(d − 1) and 
lass
d∗. Applying the Plü
ker Formulas to C yields:(1.9) µDp(d) ≤ 1

2

(
d(d − 1)2 − 5 −

√
d(d − 1)(3d − 14) + 25

)
.Many years later, Stagnaro remarked that Basset's arti
le was not rigorous enoughand gave a modern proof [Sta83℄. Furthermore, his proof yielded a generalizationof Basset's bound to ordinary q-fold points, see se
tion 3.1.3.



18 1. THE IMPORTANT FIRST STEPS (UNTIL 1915)The following table gives the knowledge on µDp(d) at this point. AlthoughRohn used the method des
ribed above only for 
onstru
ting quarti
s, we list thenumber of nodes on surfa
es of higher degree that one obtains in this way. The boldnumbers indi
ate the 
ases in whi
h Basset's upper or Rohn's lower bound improvethe previously known bounds:
d 1 2 3 4 5 6 7 8 9 10 11 12 d

µDp(d) ≤ 0 1 4 16 34 66 114 181 270 383 524 696 ≈ 1
2d3

µA1
(d) ≥ 0 1 4 16 20 45 63 112 144 225 275 396 ≈ 1

4
d3We only want to mention in passing that in the years after Basset's dis
overy,several other people tried to improve his bound. E.g., Lefs
hetz [Lef13℄ and Holl-
roft [Hol23℄, [Hol28℄, [Hol29℄ su

eeded, but only under a 
ertain assumptionwhi
h Lefs
hetz 
alls the �postulate of singularities�. As Lefs
hetz mentioned, forplane 
urves this postulate is equivalent to the �almost obvious� admission thatwhen a 
urve 
an have κ1 
usps it 
an also have any number of 
usps smallerthan κ1. Nowadays, it is known that su
h properties 
an be shown by proving thenon-obstru
tedness of a 
ertain deformation fun
tor.1.5. Some Hypersurfa
es in Higher Dimensions1.5.1. C. Segre's 10-nodal Cubi
 in P4. Already at the end of the 19th
entury, the �rst hypersurfa
es in higher dimensions with many singularities were
onstru
ted: In 1887, C. Segre des
ribed a 10-nodal 
ubi
 in P4 [Seg87℄ (see also[Seg88℄, [Cas88℄) whi
h is the maximum possible number by an argument similarto (1.3). It 
an be shown that there is in fa
t only one su
h 
ubi
 up to proje
tiveequivalen
e, see e.g. [Kal86℄. When denoting by σj(x0, x1, . . . , x5), j ∈ N, the j-thelementary symmetri
 polynomial in P5, C. Segre's 
ubi
 has the following ni
eequation:(1.10) Seg3 : σ1(x0, x1, . . . , x5) = σ3(x0, x1, . . . , x5) = 0.The 10 nodes are the elements of the Σ6-orbit of the point (1 : 1 : 1 : −1 : −1 :

−1). Another equally ni
e equation is (
ompare Clebs
h's Diagonal Cubi
 (1.5) inse
tion 1.1 on page 13 and Kalker's 
ubi
s in se
tion 3.11 on page 41):(1.11) Seg3 :

5∑

i=0

xi =

5∑

i=0

x3
i = 0.C. Segre also noti
ed (see [Seg87℄ and also [Tog50, p. 53℄) that it is possible to
onstru
t a Kummer quarti
 with the help of his 10-nodal Cubi
 in P4 (in fa
t, thisseems to be his major motivation for 
onstru
ting the 
ubi
 in P4). To understandthis 
onstru
tion of the Kummer quarti
, let us start with a 
ubi
 hypersurfa
e Hin P4 and a general point P on it. We may assume that P has the 
oordinates

(1 : 0 : 0 : 0 : 0) s.t. H has the form
H = F3 + 2x0F2 + x2

0F1,where the Fi ∈ C[x1, x2, x3, x4] have degree i = 1, 2, 3. The proje
tion of H from Pto P3 is a 2-fold rami�ed 
overing with bran
h lo
us(1.12) Φ4 := det

(
F1 F2

F2 F3

)
.



1.5. SOME HYPERSURFACES IN HIGHER DIMENSIONS 19In general, Φ4 has 1·2·3 = 6 singularities at the points in whi
h all the Fi, i = 1, 2, 3,vanish. But if H is the 10-nodal Segre 
ubi
 Seg3 then one expe
ts to get 10additional nodes on Φ4. Indeed, in this way we get the 16-nodal Kummer quarti
.1.5.2. Burkhardt's 45-nodal Quarti
 in P4. In 1891, Burkhardt 
onstru
teda quarti
 in P4 with 45 nodes and showed this to be the maximum possible number[Bur91℄. Its beautiful geometri
al and 
ombinatorial properties 
onne
ted to thegroup of the 27 lines of the 
ubi
 surfa
es were worked out in [Bak46℄ and [Tod47℄.The fa
t that the Burkhardt quarti
 is also unique up to proje
tive equivalen
e isa mu
h more re
ent result [dJSBdV90℄. Similar to C. Segre's 10-nodal 
ubi
, thisunique 45-nodal quarti
 
an be given by elementary symmetri
 polynomials:(1.13) Bu4 : σ1(x0, x1, . . . , x5) = σ4(x0, x1, . . . , x5) = 0.Nowadays, we know that the Burkhardt quarti
 is unobstru
ted whi
h shows theexisten
e of quarti
s with exa
tly 0 up to 45 nodes. Determinantal equations forsu
h quarti
s were given only re
ently [Pet98℄.1.5.3. Some Cubi
s with Many Singularities. The �rst 
ubi
 in P5 withthe maximum number of ordinary double points was Veneroni's 15-nodal hypersur-fa
e [Ven14℄. The des
ription of the spa
e of all su
h hyper
ubi
s was the mainsubje
t of Kalker's Ph.D. thesis 70 years later [Kal86℄.Lefs
hetz 
onsidered higher-dimensional hypersurfa
es with many higher singu-larities. E.g., he 
onstru
ted a 
ubi
 hypersurfa
e in P4 with 5 
usps whi
h is themaximum possible number, see [Lef12℄.



Barth's D5-symmetri
 Togliatti quinti
 from 1993. Togliatti already showed theexisten
e of 31-nodal quinti
s in 1940, but he did not give 
on
rete equations.



CHAPTER 2The Problem is Di�
ult (1915�1959)After the �rst fruitful years the development of the area of hypersurfa
es withmany singularities slowed down a bit. In fa
t, the �rst striking result after Basset'supper bound of 1906 was the 
onstru
tion of Togliatti's 31-nodal quinti
 surfa
e in1940 (se
tion 2.1). It seems that it was only after this dis
overy that the geometersrealized the di�
ulty and relevan
e of the problem (see e.g., [Tog50℄).In the following years, several papers appeared on the subje
t. The major re-sults in this dire
tion were probably B. Segre's 
ounterexamples to Severi's 
laimedupper bound (se
tion 2.2), and B. Segre's observation that pull-ba
k under a bran
hed
overing is a good way to produ
e many singularities (se
tion 2.4).2.1. Togliatti's Cubi
s in P5 and Quinti
 in P3More than 20 years after Veneroni, Togliatti also 
onstru
ted 15-nodal 
ubi
sin P5 [Tog36℄ ([Tog37℄ 
ontains a simpli�ed version) and he also proved that thiswas the maximum possible number of nodes on su
h a hypersurfa
e. As Togliattiremarked on the last page of [Tog37℄, his family 
ontains Veneroni's as a spe
ial
ase. His three-parameter family of 15-nodal 
ubi
s is:(2.1) Tog3 : x3x4x5 + x3A + x4B + x5C = 0,where A, B, C ∈ C[x0, x1, x2] are de�ned as follows:
A := −x2

0 + lx2
1 +

1

k
x2

2, B :=
1

l
x2

0 − x2
1 + hx2

2, C := kx2
0 +

1

h
x2

1 − x2
2,and where the three parameters 0 6= h, k, l ∈ C satisfy the 
ondition hkl + 1 6= 0. Aparti
ularly ni
e equation of a 15-nodal 
ubi
 in P5 arises for h = k = l = 1.Togliatti's 
ubi
s are mu
h better known than Veneroni's be
ause Togliatti usedthem to show the existen
e of a 31-nodal quinti
 surfa
e Tog31 in P3 [Tog40℄ whi
hwas the �rst new lower bound for the maximum number µ(d) of singularities on asurfa
e of degree d in P3 sin
e 50 years:(2.2) µA1

(5) ≥ 31.Togliatti's 
onstru
tion is a variant of C. Segre's 
onstru
tion of the Kummerquarti
 (1.12). Togliatti started with a smooth hyper
ubi
 H in P5. As there arefour 
onditions on a line to be 
ontained in su
h a 
ubi
 and as the Grassmanianof lines has dimension 8, we get a four-dimensional family of lines on a generi
hyper
ubi
 H . Assuming that the line l is given by x2 = x3 = x4 = x5 = 0, the
ubi
 
an be written in the from
H = A + 2x1B + 2x1C + x2

0D + 2x0x1E + x2
1F,where A, B, C, D, E, F ∈ C[x2, . . . , x5]. When interse
ting H ⊂ P4 with the P3 of

P2's 
ontaining l we get a 
ubi
 
onsisting of the line l and a residual 
oni
 whi
h21



22 2. THE PROBLEM IS DIFFICULT (1915�1959)will be a pair of lines if(2.3) Φ5 := det




A B C
B D E
C E F


 = 0.

Φ5 is a quinti
 surfa
e in P3 with 
oordinates x2, . . . , x5. This surfa
e has 16singular points 
orresponding to the points in whi
h all the 2 × 2 minors of thematrix vanish. Now, if the hyper
ubi
 C in P5 has some nodes one expe
ts thequinti
 surfa
e Φ to have the same number of extra nodes. Using a 15-nodal 
ubi
we get the desired 16+15 = 31 nodes on Φ5 whi
h we denote by Tog31 in that 
ase.Nowadays, all 31-nodal quinti
s in P3 all 
alled Togliatti quinti
s be
ause Beauvilleshowed in [Bea79b℄ using a result of Catanese [Cat81℄ that all 31-nodal quinti
sin P3 
an a
tually be obtained with Togliatti's 
onstru
tion.Other more expli
it 
onstru
tions of 31-nodal quinti
s were given later: In 1983,Stagnaro 
onstru
ted a 31-nodal quinti
 in P3, and a real dihedral-symmetri
 su
hquinti
 was found by Barth in the 90's. The latter was des
ribed in Endraÿ's Ph.D.thesis [End96℄ (see also se
tion 4.2 on page 47).2.2. Severi's Wrong Assumption and B. Segre's First Constru
tionIn 1946, Severi wrote an arti
le [Sev46℄ on an upper bound of (
d+2
3

)
− 4 ≈ 1

6d3singularities whi
h was shown to be wrong by B. Segre only shortly afterwards[Seg47℄.In fa
t, Severi 
onsidered the following property as being intuitively 
lear: µordinary double points diminish the number of moduli of the surfa
e at least by µ.As Lefs
hetz already noti
ed (see end of se
tion 1.4), we have to be very 
arefulwith su
h arguments. Burns and Wahl [BW74℄ analyzed this problem in 1974:They showed that the minimal resolution X → f of a µ-nodal surfa
e f of degree
d is unobstru
ted if and only if the set of nodes Σ is d-independent, i.e. for anypartition Σ = Σ′ ∪ Σ′′, one may �nd a hypersurfa
e of degree d 
ontaining Σ′ andmissing Σ′′. To obtain an example of a surfa
e of the lowest possible degree withobstru
ted minimal resolution, they 
onsidered the variants(2.4) BWd :=

d∏

i=1

li(x0, x1, x2) − xd
3 = 0of Rohn's 
onstru
tion (1.8) with (

d
2

) singularities of type Ad−1 (the li are generallinear forms in x0, x1, x2). Indeed, for d = 5 this is a quinti
 with ten A4-singularitieswhi
h is an example of an obstru
ted minimal resolution of a surfa
e of the lowestdegree.Burns and Wahl [BW74℄ also mentioned that B. Segre's 
ounterexamples[Seg47℄ to Severi's 
laim lead to unobstru
ted minimal resolutions. These 
anbe 
onstru
ted as follows. Consider the form
Φ := det




f11 · · · f1r... . . . ...
fr1 · · · frr


 ,where fij = fji are forms of degree k in four variables. Su
h a surfa
e Φ of degree

r·k in P3 has in general nodes at the δ :=
(
r+1
3

)
·k3 points in whi
h the (r−1)×(r−1)minors of the matrix vanish.



2.4. B. SEGRE'S SECOND CONSTRUCTION 23In se
tion 9 of his arti
le, B. Segre spe
ialized the fij and got surfa
es of degree
r·k with exa
tly δ1 := δ + r

2k2(k− 1) = rk
6 (r2k2 +2k2− 3k) nodes. For r = 2, theseare surfa
es of even degree d = 2k with exa
tly 1

4d3 − 1
4d2 nodes whi
h disprovedSeveri's 
laim.As already mentioned in se
tion 1.3 on page 16, Viat. Kharlamov informed meof the fa
t that for r = 2, these surfa
es had already been found by Rohn [Roh86℄60 years earlier in the 
ase of quarti
s.Togliatti [Tog50℄ gave an overview of the results on hypersurfa
es with manysingularities known until 1950 and pointed out the di�
ulty of the subje
t. Hissurvey arti
le turned out to have some in�uen
e on the development of the subje
t:In fa
t, several authors 
ited this arti
le as a motivation for working in this �eld inthe following years.2.3. Gallarati's General Constru
tionsIn [Gal51b℄, Gallarati remarked that the spe
ial 
ase of r = 2 of B. Segre's
onstru
tion also worked for odd degree in order to show that Severi's 
laim failsfor all d ≥ 12. Again, this was basi
ally a redis
overy of Rohn's 
onstru
tion fromse
tion 1.3 on page 16.Gallarati [Gal51a℄ also gave another 
onstru
tion of nodal surfa
es of degree din P3 with approximately≈ 1

4d3 nodes. His 
onstru
tion improved the old bound 1.8on page 16 in the lower order terms:(2.5) µA1
(d) ≥

{ 1
4d3+1

4
d2 − d, d even

1
4d3−1

4
d2 − 1

4d + 1, d odd.It is interesting to note that he also gave a 
onstru
tion of surfa
es of odd degree
d with exa
tly one triple point and many additional nodes whose number of nodes
δ(d) ex
eeded the previously mentioned ones:(2.6) δ(d) =

1

4
d3+

1

4
d2 − 9

4
d − 9

4
.The following table lists the bounds known up to this point. Again, the bold num-bers indi
iate the 
ases in whi
h Gallarati's 
onstru
tion improved the previouslyknown bounds. In the 
ases in whi
h µA1

(d) di�ers from µ(d), we give both num-bers:
d 5 6 7 8 9 10 11 12 d

µDp(d) ≤ 34 66 114 181 270 383 524 696 ≈ 1
2d3

µA1
(d) (µ(d)) ≥ 31 57 72(81) 136 160(181) 265 300(337) 456 ≈ 1

4d32.4. B. Segre's Se
ond Constru
tionIn [Seg52℄, B. Segre introdu
ed another ni
e 
onstru
tion of surfa
es with manysingularities using pull-ba
k under a bran
hed 
overing. He 
onsidered the map
Ω : P3 → P3, (x0 : x1 : x2 : x3) 7→ (x2

0 : x2
1 : x2

2 : x2
3).This map has degree eight and the pull-ba
k of a form f(x0, x1, x2, x3) of degree

d under this map is a form f(x2
0, x

2
1, x

2
2, x

2
3) of degree 2d. A node of f outsidethe 
oordinate tetrahedron 
orresponds to eight nodes of the transformed surfa
e.Taking f to be tangent to the tetrahedron, one gets additional nodes. In this way,B. Segre 
onstru
ted surfa
es of degree 4, 6, 8 with 16, 63, 153 nodes, respe
tively.



24 2. THE PROBLEM IS DIFFICULT (1915�1959)E.g., for the Kummer quarti
 he took a tetrahedron ea
h of whose four planes tou
ha smooth quadri
 in generi
 points.B. Segre explained that his 
onstru
tion 
an also be applied to any nodal surfa
e
F0 of degree d0 with k0 nodes. The resulting surfa
e has degree 2d0 and 8k0 + 4nodes. Applied su

essively to his 153-nodal o
ti
 and so on, this yields surfa
es Fiof degree d = 2i · 8 with(2.7) µA1

(d) >
153

83
d3nodes. This was the �rst time that an asymptoti
 lower bound of more than 1

4d3singularities on a surfa
e of degree d appeared. We get the following table (Basset'supper bound was still the best one whi
h was valid without additional assumptions):
d 5 6 7 8 9 10 11 12 d

µDp(d) ≤ 34 66 114 181 270 383 524 696 ≈ 1
2d3

µA1
(d) (µ(d)) ≥ 31 63 80(81) 153 180(181) 265 336(337) 508 ≈ 153

512
d3In his paper, B. Segre also remarked that it might be possible to adapt his
onstru
tion of the 153-nodal o
ti
 to get a 160-nodal one. This would improve thislower bound to ≈ 160

83 d3 = 5
16d3.In the same paper, B. Segre also tried to improve the upper bounds for a surfa
e

f with only isolated double points. He did not su

eed in general, but under theassumption that f does not possess an in�nite number of tritangent planes (i.e.planes whi
h are tangent to the surfa
e in three points) and that its paraboli
 
urve(the interse
tion of the surfa
e with its hessian) and its �e
nodal 
urve (the pointsat whi
h there is a line having at least 4-point 
onta
t with the surfa
e) do not
ontain any 
ommon 
omponent. E.g., he showed that � under these assumptions� a quinti
 
annot have more than 31 singularities and a sexti
 
annot have morethan 63 ones. Of 
ourse, this did not prove that there were no surfa
es with morenodes, but it gave an idea where to sear
h for su
h examples.2.5. Gallarati's Generalization of B. Segre's Se
ond Constru
tionShortly after B. Segre's dis
overy, Gallarati [Gal52a℄ generalized the map Ω tohigher dimensions and higher singularities:(2.8) Ωn
j : Pn → Pn, (x0 : x1 : · · · : xn) 7→ (xj

0 : xj
1 : · · · : xj

n).As an example analogous to B. Segre's 
onstru
tion of the Kummer quarti
, Gal-larati took a smooth quadri
 in Pn tou
hing the n + 1 hyperplanes of the 
oordi-nate (n + 1)-hedron in generi
 points. Via Ωn
2 this gives a hyperquarti
 in Pn with

(n + 1) · 2n−1 nodes. E.g., Gallarati obtained a 40-nodal hyperquarti
 V40 in P4.2.5.1. A Formula. Gallarati did not give a general formula for the numberand type of singularities one obtains in this way. But it is easy to derive a formulafor hypersurfa
es with Aj-singularities similar to B. Segre's 
ase of nodal surfa
esin P3: Let F0 be a hypersurfa
e in Pn of degree d0 with k0 singularities of type
Aj . Take n+1 general hyperplanes tangent to F0 as the 
oordinate (n+1)-hedron.The degree of the map Ωn

j+1 is (j +1)n away from the 
oordinate hyperplanes. It is
(j +1)n−1 on a general interse
tion point of two of the 
oordinate hyperplanes, and
(j+1)n−i, i = 2, 3, . . . , n, for even more spe
ial points on the 
oordinate hyperplanes.



2.5. GALLARATI'S GENERALIZATION OF B. SEGRE'S SECOND CONSTRUCTION 25For our generi
 
hoi
e of 
oordinate hyperplanes tangent to F0 the pull-ba
k under
Ωn

j+1 thus gives a hypersurfa
e F1 in Pn of degree d1 := (j + 1)·d0 with(2.9) µAj
(F1) = (j + 1)n·k0 + (n + 1)·(j + 1)n−1singularities of type Aj . E.g., applied to a smooth quadri
 in P3 this gives:Corollary 2.1. Let j ∈ N. There exist surfa
es in P3 of degree d = 2·(j + 1)with 4·(j + 1)2 singularities of type Aj .Spe
ializing even further to n = 3, j = 2, we obtain:(2.10) µA2

(6) ≥ 36.Noti
e that this is quite interesting be
ause we know nowadays from Miyaoka'sbound (se
tion 3.10 on page 40) that µA2
(6) ≤ 37 holds.Applying the pre
eding 
onstru
tion to F1, we obtain a hypersurfa
e F2 in Pnof degree d2 := (j + 1)2·d0 with

µAj
(F2) = (j + 1)n

(
(j + 1)n·k0 + (n + 1)·(j + 1)n−1

)
+ (n + 1)(j + 1)n−1singularities of type Aj . Iterating this, we get a hypersurfa
e Fi of degree di :=

(j + 1)i·d0 with(2.11) µAj
(Fi) = (j + 1)ni·k0 +

n + 1

j + 1
·
((j + 1)n(i+1) − 1

(j + 1)n − 1
− 1

)singularities of type Aj . Approximately, we thus have:(2.12) µAj
(Fi) ≈

1

dn
0

·
(

k0 +
(n + 1)·(j + 1)n−1

(j + 1)n − 1

)
·dn

i for i large.Noti
e that it is easy to 
ompute how many singularities we need to improvethe best known lower bounds using the formula (2.12). E.g., let us look at nodalsurfa
es: To improve Chmutov's lower bound ≈ 5
12d3 for the maximum number ofnodes on a surfa
e of degree d (se
tion 4.1 on page 45) it su�
es to 
onstru
t asurfa
e of degree d0 with k0 nodes, s.t. k0 > 5

12d3
0 − 16

7 . Comparing this with thebest known upper bound (se
tion 3.10 on page 40), we �nd, e.g., that a 13652-nodalsurfa
e of degree 32 or a 109225-nodal surfa
e of degree 64 would be su�
ient.We also want to mention that B. Segre's idea was redis
overed and workedout in detail in the 
ase of plane 
urves with Aj -singularities by Hirano in 1992[Hir92℄. E.g., he found the lower bound of ≈ 9
32d2 
usps on a plane 
urve of degree

d in the way des
ribed above by starting from a smooth 
oni
. To our knowledge,the 
urrently best known lower bound for the maximum number of 
usps on aplane 
urve is Vik.S. Kulikov's [Kul03℄. He was able to 
hoose at every other stepof the iteration one of the 
oordinate axes to be bitangent to the 
urve whi
h gives
µ2

A2
(d) ' 283

60·16d2 when starting from a three-
uspidal quarti
. D. Pa

agnan (astudent of Stagnaro) announ
ed in an abstra
t of a talk at the ICM 1998 a slightlybetter lower bound, but this was never published. The 
urrently best known upperbound is: µ2
A2

(d) ≤ 5
16d2 − 3

8d. This result is probably due to Ivinskis [Ivi85℄, seealso: [Hir86℄, [Sak93℄. To our knowledge, the maximum number of 
usps on aplane 
urve of degree d is still unknown for d > 12.



26 2. THE PROBLEM IS DIFFICULT (1915�1959)2.5.2. Gallarati's Appli
ations of the Constru
tion. In his arti
le, Gal-larati performed the 
omputation presented in the previous se
tion in the spe
ial
ase of nodal surfa
es in P3, i.e. j = 2 and n = 3. This gave a slight improvement toB. Segre's lower bound be
ause B. Segre only 
onsidered one 
oordinate hyperplane(instead of four) to be tangent to the surfa
e. For the maximum number of nodeson a surfa
e of degree d = 2k · 8 Gallarati thus obtained:(2.13) µA1
(d) '

(
153

512
+

1

224

)
d3.But one 
annot only obtain hypersurfa
es with many Aj -singularities using this
onstru
tion as Gallarati's example of a surfa
e of degree 9 in P3 with 36 ordinarytriple points showed. This surfa
e is ni
ely 
onne
ted to 
ubi
 surfa
es with E
kardtpoints: He started with a smooth 
ubi
 surfa
e with four E
kardt points, i.e. pointsin whi
h three of the 27 lines meet. Taking as the 
oordinate tetrahedron the fourplanes tangent to these E
kardt points, Ω3

3 yields a noni
 with 4 · 32 = 36 triplepoints (re
ently, Stagnaro used similar ideas to get 39 triple points [Sta04℄).Gallarati then used the 40-nodal quarti
 V40 in P4 obtained above to 
onstru
ta sexti
 in P3 in a way similar to the 
onstru
tion of the Kummer quarti
 (1.12)and the Togliatti quinti
 (2.3): Taking one of the nodes of V40 as the origin P :=
(1 : 0 : · · · : 0) of the 
oordinate system, V40 has the form:(2.14) V40 := x2

0F2 + 2x0F3 + F4 = 0,where Fi ∈ C[x1, x2, x3, x4] are of degree i, i = 2, 3, 4. The proje
tion from P tothe P3 given by x0 = 0 is a 2-fold rami�ed 
overing with bran
h lo
us(2.15) Ga63 := det

(
F2 F3

F3 F4

)
.Ga63 has 2·3·4 + (40 − 1) = 63 double points whi
h is the same number of nodesas B. Segre's sexti
. Gallarati also remarked that a similar 
onstru
tion 
ould notwork if we started with a 45-nodal quarti
 in P4 be
ause it would give a 68-nodalsexti
 whi
h is not possible be
ause of Basset's bound. But it is interesting to notethat van Straten's suggestion to try to start with the 3-parameter family of 42-nodalquarti
s yields a 3-parameter family of 65-nodal sexti
s as shown in [Pet98℄, seealso se
tion 4.5 on page 50.2.6. Kreiss's Constru
tionIn 1955, Kreiss des
ribed a 
onstru
tion of some surfa
es of even degree d = 2kwith many nodes [Kre55℄. Similar to a 
onstru
tion of Castelnuovo [Cas91℄, theyhave the form

f = Q(f1, f2, f3),where Q(u, v, w) is a 
oni
 in P2 and the fi are forms of degree k whi
h are assumedto de�ne k3 simple points. A generi
 surfa
e f has these k3 points as nodes. Wenow take hyperplanes Eij , i = 1, 2, 3, j = 1, 2, . . . , n, and put fi :=
∏k

j=1 Eij .The �bre of the rational map P3 → P2, x 7→ (f1(x) : f2(x) : f3(x)) over ageneri
 point of the form (0 : α : β) will have k
(
k
2

) singular points 
orresponding tothe interse
tion points of the (
k
2

) lines E1i ∩ E1j with the surfa
e βf2 − αf3 = 0. Ifone 
hooses the 
oni
 Q to be tangent to u = 0, v = 0, w = 0 in P2 one obtains a



2.7. GALLARATI'S 160-NODAL CONSTRUCTION 27surfa
e of degree d = 2k with(2.16) µA1
(d) ≥ k3 + 3k

(
k

2

)
=

5

16
d3 − 3

8
d2, d = 2k, k ∈ N,singularities whi
h are all nodes in general.Then Kreiss assumed that in the net spanned by f1, f2, f3 there was a fourthsurfa
e f4 = af1 +bf2+cf3 whi
h de
omposed as a produ
t of k linear forms. Thenby making Q also tangent to the line au+ bv+ cw = 0 in P2 we would get a surfa
ewith k3 +4k

(
k
2

)
= 3k3−2k2 singular points. To show this, Kreiss argued as follows:To have a syzygy of the form ∑4

i=1 E1i · · ·Eki = 0 between four k-tuples of linearforms we have 16k 
oe�
ients at our disposal whi
h are subje
t to (
k+3
3

) algebrai
equations. As the inequality 16k ≤
(
k+3
3

) holds exa
tly for k ≤ 7, Kreiss 
laimed tohave 
onstru
ted surfa
es of degree d = 2k, 2 ≤ k ≤ 7, with(2.17) 3k3 − 2k2 =
3

8
d3 − 1

4
d2, d = 2k, 2 ≤ k ≤ 7,nodes.Van Straten remarked that su
h a 
onstru
tion is indeed possible for k = 2 ifone takes the three pairs of parallel planes of a 
ube, but that the problem withKreiss's argument for other k is the fa
t that one has to remove degenerate solutionsof the above set of equations and that this might leave us with the empty set.Nevertheless, Kreiss's work is often 
ited, and it took a long time until 
on-stru
tions giving at least the number of nodes that Kreiss's 
onstru
tion wouldgive. Be
ause of this in�uen
e, we list the lower bounds that Kreiss 
laimed to havefound despite van Straten's previously mentioned remark:

d 4 6 8 10 12 14

µA1
(d) ≥ 16 63 160 325 576 931Taking into a

ount Gallarati's improvement (2.13) of B. Segre's lower bound basedon an existing nodal surfa
e, we get with the 576-nodal dode
ti
 the existen
e ofsurfa
es of degree d = 2k · 12 with(2.18) µ(d) '

253

756
d3 ≈ 0.3347d3nodes. 2.7. Gallarati's 160-nodal Constru
tionDespite Kreiss's 160-nodal o
ti
 in P3, Gallarati wrote an arti
le on anothersu
h surfa
e be
ause of its interesting 
onstru
tion [Gal57℄. He started with theform

V 9 = x1x2x3x4x5 − y1y2y3y4y5in P9. V is singular along the 100 P5's obtained by equating two of the xi and twoof the yi to zero. So, a general linear se
tion gives a family of 100-nodal quinti
sin P4. Gallarati then argued that one 
ould 
hoose this se
tion so that it a
quireda triple point P and that the lines joining P and the 100 nodes of the quinti
 werenot 
ontained in the tangent 
one at P . Thus the rami�
ation lo
us of the form(2.19) Ga160 := det

(
F3 F4

F4 F5

)
= 0has 3 · 4 · 5 + 100 = 160 nodes.



28 2. THE PROBLEM IS DIFFICULT (1915�1959)Moreover, Gallarati remarked that it might be possible to spe
ialize further andto obtain an o
ti
 with more than 160 nodes in this way. To our knowledge, this isstill unknown.Van Straten mentioned that it might be possible to go to still higher dimensions:E.g., a general linear se
tion of
V 13 = x1x2x3x4x5x6x7 − y1y2y3y4y5y6y7in P3 has 225 nodes. Again, one might hope to be able to 
hoose this se
tion sothat it a
quires a quadruple point whi
h 
ould then give a surfa
e of degree 10 with

4 · 5 · 6 + 225 = 345 nodes. This would be the same number of nodes as Barth'sde
ti
 (see se
tion 4.5 on page 50). Some questions arising from this observationare the following: Does this 
onstru
tion work? If it does, is the surfa
e di�erentfrom Barth's (se
tion 4.5)? Can we go on?





Chmutov's septi
 TChm3
7, 
onstru
ted around 1982 using T
heby
hev polynomials.Variants of this basi
 idea are still the best ones for 
onstru
ting hypersurfa
es withmany nodes of high degree.



CHAPTER 3Modern Methods (1960�1990)From the 1960's on, a systemati
 theory of singularities (see e.g. [Mil68℄,[AGZV85a, AGZV85b℄) and their deformations was developped. These newmethods allowed signi�
ant improvements of the known bounds around 1980.Highlights of the period between 1960 and 1990 were Beauville's proof for
µA1

(5) = 31 in 1979 (se
tion 3.3) as well as Var
henko's (1983, se
tion 3.7) andMiyaoka's (1984, se
tion 3.10) upper bounds. These were the �rst upper boundsfor the maximum number of nodes on a surfa
e of degree d whi
h had a betterasymptoti
 behaviour than the 100 year-old upper bound µDp(d) / 1
2d3 based onthe 
lass of the surfa
e. In fa
t, Miyaoka's bound µDp(d) / 4

9d3 is still the bestknown bound for surfa
es and Var
henko's spe
tral bound is still the best knownone for hypersurfa
es in higher dimensions. The strength of Var
henko's bound 
anbe illustrated by the fa
t that it is exa
t for 
ubi
 hypersurfa
es in Pn as Kalker'sexamples from 1986 showed (se
tion 3.11). Another important 
ontribution wasChmutov's idea to use T
heby
hev polynomials for 
onstru
ting hypersurfa
es withmany singularities (se
tion 3.8).3.1. Stagnaro's Results on Surfa
es with Many Singularities3.1.1. Surfa
es with a j-tuple Point. In [Sta68℄, Stagnaro 
onsidered sur-fa
es in P3 of the form(3.1) F2m+j : x2m
0 Fj + 2xm

0 Fm+j + F2m+j = 0,where Fi ∈ K[x1, x2, x3] are forms of degree i, i ∈ {j, m + j, 2m + j} and K is analgebrai
ly 
losed �eld of a 
hara
teristi
 whi
h is not a 2m(2m + 1) divisor. Thesurfa
es F2m+j have a j-tuple point in (1 : 0 : 0 : 0).For j = 1 and m = 2q − 1 he then 
hose the Fi in a spe
ial way s.t. F2m+j =
F4q−1 was a surfa
e of degree 4q−1 with 4q(2q−1)2 nodes and 12q−9 singularitiesof type A2(q−1). His reasoning still 
ontained an arbitrary form Θ2(q−2) of degree
2(q− 2). For a parti
ular example, this 
an be 
hosen in a parti
ular way to obtaineven more singularities. E.g., this allowed him to show the existen
e of a septi

F7 with 72 nodes and 16 additional 
usps. Noti
e that the previously best lowerbound for µ(d), 81, was also given by a 
onstru
tion of surfa
es with singularitiesdi�erent from nodes, namely Gallarati's surfa
es with a triple point and additionalnodes (2.6):(3.2) µ(7), µDp(7) ≥ 88, although still, we have only: µA1

(7) ≥ 72.With the help of the 28 bitangents to a quarti
 plane 
urve, Stagnaro then usedthe above te
hnique to show the existen
e of surfa
es F2m+4 of degree 2m + 4 with
m

(
2m+8

2

) isolated double points and an ordinary quadruple point in (1 : 0 : 0 : 0).E.g., for m = 2 this is an o
ti
 with a quadruple point and 132 additional nodes.31



32 3. MODERN METHODS (1960�1990)3.1.2. A Sexti
 with 64 Nodes and a Septi
 with 90 Singularities. 10years later [Sta78℄, Stagnaro 
onstru
ted a surfa
e of degree 6 with 64 singularitieswhi
h showed:(3.3) µA1
(6) ≥ 64.Noti
e that until this point, three sexti
s with 63 nodes had been known (see se
-tions 2.4, 2.6, 2.5). A

ording to B. Segre's upper bound mentioned at the end ofse
tion 2.4, a 64-nodal sexti
 
annot verify B. Segre's assumptions. And indeed,Stagnaro showed that his sexti
 St64 had an in�nite number of tritangent planes.Its 
onstru
tion is based on a very spe
ial 
on�guration of lines and 
oni
s in theplane. 1With an analogous method he 
onstru
ted a surfa
e of degree 7 with 72 nodesand 18 additional 
usps. These are two more 
usps than those of the example ofthe previous se
tion. We have:(3.4) µA(7) ≥ 90, although still, we have only: µA1

(7) ≥ 72.Under 
ertain assumptions, Stagnaro also gave a slight improvement of Basset'supper bound whi
h 
omputes to 65 for the 
ase of degree 6. Nowadays, we knowthat 65 is the 
orre
t bound for sexti
s (see se
tion 4.5 on page 50).3.1.3. Stagnaro's Upper Bound for Ordinary q-fold Points. In [Sta83℄,Stagnaro gave a modern proof of Basset's bound and generalized it to ordinary q-fold points. Denoting by µq(d) the maximum number of q-fold points on a surfa
eof degree d, he showed:(3.5) µq(d) ≤ 4d(d − 1)(d − 2)

q(q − 1)(4q − 5)and also:(3.6) µq(d) ≤ 1

2q(q−1)3
·
(
2d(d − 1)2(q − 1) − 13q + 16

−
√

4d(d − 1)(3d − 11q + 8)(q − 1) + (13q − 16)2
)
.The exa
tness of (3.5) for d = 5 was already known [Gal52b℄. An interestingremark of Stagnaro was that this bound is exa
t in several other 
ases, too (although(3.6) is better for d large). To prove this, he took the following generalization ofCastelnuovo's 
onstru
tion [Cas91℄ (see also se
tion 2.6): He 
onsidered surfa
es

As, Bs, Cs of degree s meeting in s3 distin
t points. If Fq is a generi
 form of degree
q then(3.7) Stags,q := Fq(As, Bs, Cs)is a surfa
e of degree s·q in P3 with s3 ordinary q-fold points. Playing this against(3.5), he showed that s3 was the maximum number of q-fold points on a surfa
e ofdegree s·q if(3.8) q ≥ 1

8

(
3(3s3 − 4s2 + 3) +

√
9(3s3 − 4s2 + 3)2 − 16(5s3 − 8s + 5)

)
.This yielded an in�nite number of 
ases in whi
h the exa
t value of µq(d) wasknown. E.g., for s = 2, (3.8) is equivalent to q ≥ 8, so for a surfa
e of degree 2·q,1Van Straten 
he
ked Stagnaro's equation of St64 using 
omputer algebra and found it tobe wrong. Its 
onstru
tion 
onsists of several pages of geometri
al arguments, so maybe the
onstru
tion is basi
ally 
orre
t, but only 
ontains some typos. Be
ause of the lengthy argumentwe were not able to �gure this out.
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q ≥ 8, the maximum number of q-fold points is 23 = 8. So, µ8(16) = 8, µ9(18) = 8,et
. In general, the 
riterion gives exa
tness only for 
ases in whi
h the multipli
ityof the ordinary singularities are large 
ompared to the degree.Beside this, Stagnaro summarized the best known 
onstru
tions until this pointin a table. There, he 
ited his septi
 from [Sta78℄ (se
tion 3.1.2) with 72 nodes and
18 
usps as a surfa
e with 90 ordinary double points whi
h yielded some 
onfusionin the literature of the following years.Only shortly afterwards, Stagnaro wrote a preprint [Sta84℄ (
ited in [Gal84℄and [Wer87℄) in whi
h he 
laimed to 
onstru
t a sexti
 with 66 nodes whi
h wouldbe the maximum possible number of double points a

ording to Basset's upperbound. But shortly afterwards, (in his own MathS
iNet review of Gallarati's his-tori
al overview), Stagnaro noti
ed that his 
onstru
tion was false. Sin
e [JR97℄,we know that su
h a sexti
 
annot exist (see also se
tion 4.5).3.2. Teissier's and Piene's Formulas for the ClassThe geometers of the 1970's realized that the old formulas for the 
lass of asingular hypersurfa
e (see for example the one pre
eding equation (1.3)) were eithernot general enough or not proven in a rigorous way. This (and generalizations ofsu
h results) were the motivation for Teissier [Tei75℄ and Piene [Pie78, p. 266℄to show that if a hypersurfa
e f of degree d in Pn has only isolated singularities
s1, . . . , sk then its 
lass d∗ 
an be 
omputed:(3.9) d∗ = d(d − 1)n−1 −

k∑

i=1

esi
,where esi

denotes the multipli
ity of the Ja
obian Ideal at a singular point si. Thisnumber esi

an also be expressed as follows (see [Bru81℄): esi

= µ(si) + µ1(si),where µ(si) is the Milnor number of the singularity of f at si and µ1(x) is theMilnor number of a generi
 hyperplane se
tion of f through si. Sin
e d∗ ≥ 0 and
µ(si) + µ1(si) ≥ 2, this gives:(3.10) µ(d) ≤ 1

2
d(d − 1)n−1.This was the �rst upper bound for the maximum number of singular points of ahypersurfa
e f with only isolated singularities whi
h held in this generality. Forsurfa
es in P3 with only double points, this bound was of 
ourse not as good asBasset's bound (se
tion 1.4), be
ause it was a generalization of the bound whi
hhad been known before the appearan
e of Basset's results.3.3. Beauville's Proof of µA1
(5) = 31 Using Coding TheoryThe �rst major breakthrough after the results of the 19th 
entury was Beauville'sproof for(3.11) µA1

(5) = 31.He 
alled a set of isolated ordinary double points si, i ∈ I, on a quinti
 fin P3 even if the sum of their ex
eptional divisors Ei on the blown up surfa
e Fwas divisible by two in Pi
(F ) or equivalently that the sum of the Ei was zero in
H2(F,Z/2). Beauville showed that even sets of nodes 
ontaining 16 and 20 elementswere the only non-empty ones on a nodal quinti
 (these a
tually o

ur, see [Bea79a℄and [Cat81℄). Supposing that the quinti
 f had at least 32 nodes s1, . . . , s32, heasso
iated to the Ei a homomorphism φ : F32

2 → H2(F,Z/2). This φ has a kernel



34 3. MODERN METHODS (1960�1990)
K of dimension dim(K) ≥ 6. Looking at K ⊂ F32

2 as a 
ode over the �eld with twoelements, its only weights are 16 and 20 a

ording to the remark above. But this
ontradi
ts the following fa
t from 
oding theory: If the weights of K are greateror equal to m
2 then m ≥ 2dim(K)−1; in 
ase of equality, K is isomorphi
 to a 
odewhi
h has 1

2 dim(K) as its only weight.3.4. Bru
e's Upper BoundsIn [Bru81℄, Bru
e improved the general upper bound (3.9) for the number ofsingular points on a hypersurfa
e of degree d in Pn with only isolated singularities.For surfa
es in P3 of odd degree d, his bound is also better than Basset's bound, al-though it still stayed ≈ 1
2d3. For the maximum number µ(d) of isolated singularitieson a hypersurfa
e of degree d in Pn, he showed:(3.12) µ(d) ≤ 1

2d ((d − 1)n(d + 1) + (d − 1)) , n even,

µ(d) ≤ 1
2 (d − 1)n, n odd, d odd,

µ(d) ≤ 1
2d ((d − 1)n(d + 1) + 1) , n odd, d even.His proof was based on a deformation theoreti
al result of Siersma [Sie74℄ and the
omputation of the rank of the interse
tion matrix of xd

1 +xd
2 + · · ·xd

n for n even andof xd
1 + xd

2 + · · ·xd
n + x2

n+1 for n odd using [Mil68℄. For the maximum number ofsingularities on a surfa
e in P3, the following bounds were known up to this point:
d 5 6 7 8 9 10 11 d

µ(d)(µA1
(d)) ≤ 32 (31) 73 (66) 108 193 (181) 256 401(383) 500 ≈ 1

2d3

µA1
(d)(µ(d)) ≥ 31 64 72 (90) 160 160(181) 325 300(337) ≈ 1

3d3Noti
e that Bru
e's list [Bru81, p. 50℄ does not show Gallarati's surfa
es of degree
d = 9, 11 with a triple point and 180 and 336 additional nodes, respe
tively (seese
tion 2.3 on page 23).3.5. Catanese's and Ceresa's Sexti
s with up to 64 NodesClemens's work on double 
overs of P3 [Cle83℄ (see also se
tion 3.13) andhis notion of defe
t raised new interest on the problem of the existen
e and the
onstru
tion of surfa
es f of degree d in P3 having a given number µ0 of nodes asits only singularites.Su
h questions were motivations for Catanese and Ceresa to 
onstru
t sexti
sin P3 with any given number µ0 = 1, 2, . . . , 64 of nodes [CC82℄. They applied B.Segre's idea to use pull-ba
k under a bran
hed 
overing, see se
tion 2.4 on page 23.B. Segre had only obtained a 63-nodal sexti
 in this way. For the 
onstru
tion of a
64-nodal one the authors thus had to use di�erent spe
ializations of the 
oordinatetetrahedron.Catanese and Ceresa also 
laimed to have shown that 64 is the maximum num-ber of nodes possible on a sexti
 
onstru
ted in this way. Barth's 65-nodal sexti
[Bar96℄ disproved this, see se
tion 4.5 on page 50.3.6. Givental's Upper BoundOnly a few years after Beauville's proof that the maximum number of nodes ona quinti
 in P3 was exa
tly 31, Givental established a general upper bound [Giv84℄



3.7. VARCHENKO'S SPECTRAL BOUND 35for the maximum number of isolated singularities on a hypersurfa
e of degree d in
Pn whi
h 
omputes to 31 in the 
ase of quinti
 surfa
es.It is worth noting that the proof of his bound is mu
h simpler than the oneof Var
henko's spe
tral bound (see se
tion 3.7). There is a drawba
k to this: Theapproximate behaviour of Givental's bound is still µ(d) / 1

2dn. But for low degreeit is mu
h better than the previously known bounds:
d 5 6 7 8 9 10 11 12 d

µ(d)(µDp(d)) ≤ 31 68 (66) 104 180 247 376 484 680 ≈ 1
2d3

µA1
(d)(µ(d)) ≥ 31 64 72 (90) 160 160(181) 325 300(337) 576 ≈ 1

3d3Givental's bound 
an be 
omputed as follows: Let I be the set of multiindi
es m,lying stri
tly inside the n-dimensional 
ube with side d:(3.13) I := {m ∈ Zn | 0 < mi < d}.We give names to the number of elements in the following subsets of I:
M := #

{
|m| =

(
n
2 + 2k

)
d
}

,

K := #
{
|m| =

(
n
2 + 2k − 1

)
d
}

,

R := #
{
|m| −

(
n
2 + 2k − 1

)
d = ±1 or ± 1

2

}
,where |m| := m1 + · · · + mn as usual and k ∈ Z. With these notations, Given-tal's upper bound on the maximum number µn(d) of isolated singularities on ahypersurfa
e of degree d in Pn is:(3.14) µn(d) ≤ 1

2
((d − 1)n + M − K − R) .As the major motivation for the resear
h on the subje
t, Givental mentionedthe following 
onje
ture on the number of singular points on a hypersurfa
e. It wasformulated by Arnold in 1981 in a dis
ussion of Bru
e's arti
le [Bru81℄ as Var
henkosaid in the introdu
tion of [Var83℄: Arnold suggested the bound µn(d) ≤ An(d),where(3.15) An(d) := #

{
(k1, . . . , kn) ∈ I

∣∣∣ 1

2
(n − 2)d + 1 <

∑
ki ≤

1

2
nd

}
.

An(d) is thus a 
ertain number of integer points within an n-dimensional 
ube.Givental's bound is slightly greater than An(d) for most degrees. Nowadays, thenumbers An(d) are 
alled Arnold numbers. The 
orre
tness of Arnold's 
onje
turewas shown only shortly afterwards by Var
henko (see next se
tion).3.7. Var
henko's Spe
tral BoundNot long after Givental's new upper bound, Var
henko was able to prove the
onje
ture of Arnold (see equation (3.15)) by showing a theorem on the spe
trumof a singularity [Var83℄. Basi
ally, the spe
trum 
onsists of the eigenvalues of themonodromy operator of the singularity, see e.g. [Kul98℄, [AGZV85b, 
h. 14℄ fordetails on the spe
trum. Var
henko's nowadays 
alled Spe
tral Bound was the �rstupper bound for the maximum number of singularities on a surfa
e of degree dwhi
h had an approximative behaviour of less than 1
2d3. In fa
t, he showed:(3.16) µn(d) ≤ An(d),



36 3. MODERN METHODS (1960�1990)where An(d) is the Arnold number de�ned in (3.15). For surfa
es in P3, this 
om-putes to:(3.17) µ(d) ≤
{ 23

48d3 − 9
8d2 + 5

6d, d ≡ 0 mod 2,
23
48d3 − 23

16d2 + 73
48d − 9

16 , d ≡ 1 mod 2.This leads to the following table:
d 5 6 7 8 9 10 11 12 d

µ(d)(µA(d)) ≤ 31 68 (66) 104 180 246 375 480 676 ≈ 23
48

d3

µA1
(d)(µ(d)) ≥ 31 64 72 (90) 160 160(181) 325 300(337) 576 ≈ 1

3d3Arnold and Givental 
omputed the approximate behaviour of An(d):(3.18) An(d) ≈
√

6

πn
dn + O(dn−1) for large n.As already mentioned, Var
henko's previous bound is based on a property ofthe spe
trum of a singularity, more pre
isely the so-
alled semi
ontinuity of thespe
trum (see [Var83℄ and also [Kul98℄, [AGZV85b, 
h. 14℄). It 
annot onlybe applied to ordinary double points, but to any type of isolated singularity in n-dimensional spa
e for whi
h it is possible to 
ompute the spe
trum. For many 
ases,this 
omputation has already been performed. The spe
trum 
an even be 
al
ulatedusing Endraÿ's Singular library spe
trum.lib or S
hulze's library gaussman.lib.These libraries also 
ontain pro
edures for 
omputing the bound for the maximumnumber of singularities of a given type on a hypersurfa
e of degree d in Pn basedon the semi
ontinuity property:LIB "gaussman.lib"; LIB "spe
trum.lib";pro
 var
henko_bound_general(int n, int d, poly sing) {poly p = 0;for(int i=1; i<=n; i=i+1) { p = p + var(i)^d; }list s = spe
trumnd(p);list ss = spe
trumnd(sing);return(spsemi
ont(s,list(ss),1)[1℄); }E.g., with this pro
edure the Singular 
odering r = 0,(x,y,z),ds;var
henko_bound_general(3, 7, x^2+y^2+z^2);gives 104 whi
h is the Var
henko's bound for the maximum number of nodeson a septi
 surfa
e in P3.To explain how to 
ompute formulas for the bound in more general 
ases, let uslook at Aj-singularities on surfa
es of degree d in P3. It is known that Var
henko'sspe
tral bound 
an be des
ribed by a polynomial of degree 3 in d, but we 
ouldnot �nd expli
it statements for j > 1 in the literature. In the following we explainbrie�y how to pro
eed in order to 
ompute these polynomials.For even degree d ≥ 4 the spe
trum sp(d) of the singularity xd + yd + zd = 0in C3 
onsists of the spe
tral numbers sd(i) = i+2

d , i = 1, 2, . . . , 3(d − 1) − 2, withmultipli
ities md(i), where
• md(1) = 1,
• md(i + 1) = md(i) + 1 + i, i < d − 1,
• md(i + 1) = md(i) + 2(imid − i) + 1, d − 1 ≤ i < imid := 3d

2 − 2,
• md(3(d− 1)− 1− i) = md(i), 1 ≤ i ≤ imid (symmetry of the spe
trum).
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trum of an Aj-singularity is also well-known (see e.g. [AGZV85b, p. 389℄).Its spe
tral numbers are j+2
j+1 , j+3

j+1 , . . . , 2j+1
j+1 , all with multipli
ity 1.Example 3.1. The spe
trum sp(6) of the singularity x6 + y6 + z6 is:

i 1 2 3 4 5 6 7 8 9 10 11 12 13spe
tral number si
3
6

4
6

5
6

6
6

7
6

8
6

9
6

10
6

11
6

12
6

13
6

14
6

15
6multipli
ity mi 1 3 6 10 15 18 19 18 15 10 6 3 1The spe
tral numbers of the A2-singularity are: 8

6 , 10
6 , both with multipli
ity 1. 2To 
ompute Var
henko's bound we have to 
hoose an open interval of length 1,say I = ( ir+2−d

d , ir+2
d ), of the spe
trum sp(d) whi
h 
ontains all spe
tral numbersof the Aj -singularity and su
h that the sum of the multipli
ities of the spe
tralnumbers in the interval is minimal. Then we have to sum up all the multipli
itiesin this interval and divide by j.Let us write d = k·(j + 1) + l. Then we may 
hoose I := ( ir+2−d

d , ir+2
d ), where

ir := k·(2j +1)+
⌊

l·(2j+1)
j+1

⌋
− 1. We introdu
e some notations: nl := imid − (d− 1),

nr := ir − imid − 1, nll := d − 1 − nl − nr, mmid =
∑d−1

i=1 i + (d
2 − 1)2. Usingthese we 
an 
ompute Var
henko's bound VarAj

(d) for the maximum number of
Aj -singularities on a surfa
e of degree d in P3 for the 
ase d, j ∈ N with d ≥ 4:(3.19) VarAj

(d) = 1
j ·

(
1
2 ·

(∑d−1
i=1 i +

∑d−1
i=1 i2 − ∑d−1−nll

i=1 i − ∑d−1−nll

i=1 i2
)

+(nr + nll) · mmid −
∑nr

i=1 i2 −
∑nl−1

i=1 i2
)

2Example 3.2. Let us look at the 
ase d = 6, j = 2 as in example 3.1. In this
ase, the 
onstants used above have the following values: k = 2, l = 0, ir = 9,
imid = 7, nl = 2, nr = 1, nll = 2, mmid = 19. We 
an now easily 
ompute thebound VarA2

(d) in (3.19) for d = 6 (
ompare the table in example 3.1):VarA2
(6) =

1

2
·
( 15 + 55 − 6 − 14

2︸ ︷︷ ︸
=10+15

+ 3 · 19 − 1 − 1︸ ︷︷ ︸
=18+19+18

)
= 40. 2Using some summation formulas we �nd the following bounds for d ≥ 4:

• µA1
(d) ≤ VarA1

(d) =

{ 23
48d3 − 9

8d2 + 5
6d, d ≡ 0 mod 2,

23
48d3 − 23

16d2 + 73
48d − 9

16 , d ≡ 1 mod 2.

• µA2
(d) ≤ VarA2

(d) =





31
108d3 − 25

36d2 + 1
2d, d ≡ 0 mod 3,

31
108d3 − 31

36d2 + 17
18d − 10

27 , d ≡ 1 mod 3,
31
108d3 − 7

9d2 + 3
4d − 5

27 , d ≡ 2 mod 3.

• µA3
(d) ≤ VarA3

(d) =





235
1152d3 − 49

96d2 + 13
36d, d ≡ 0 mod 4,

235
1152d3 − 235

384d2 + 785
1152d − 35

128 , d ≡ 1 mod 4,
235
1152d3 − 37

64d2 + 173
288d − 3

16 , d ≡ 2 mod 4,
235
1152d3 − 209

384d2 + 569
1152d − 35

384 , d ≡ 3 mod 4.The formulas are not 
orre
t for d = 3 for some j be
ause the spe
trum of the
x3 + y3 + z3 = 0 singularity does not have enough spe
tral numbers to �t into thedes
ription above.
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heby
hev Polynomials and Hypersurfa
es with Many NodesChmutov suggested (see [AGZV85b, p. 419℄ or Var
henko's overview arti
le[Var84, p. 2782℄) to 
onsider the hypersurfa
e TChmn
d of degree d in Pn with a�neequation:(3.20) TChmn

d :

n−1∑

j=0

Td(xj) =

{
0, n even,
−1, n odd,where(3.21) Td(z) :=

⌊ d
2
⌋∑

i=0

(−1)i

(
n

2i

)
zn−2i(1 − z2)idenotes the T
heby
hev polynomial of degree d having two 
riti
al values ±1 (see[Riv74℄). Td 
an be re
ursively de�ned as follows:(3.22) T0(z) := 1, T1(z) := z, Td(z) := 2z·Td−1(z) − Td−2(z).These polynomials have many other ni
e properties. We only mention two more ofthem. First, the Td(z) satisfy the equation:(3.23) Td(cos(α)) = cos(dα), α ∈ [0, π],and its derivative T ′

d(z) vanishes at αk := cos
(

kπ
d

)
, 1 ≤ k ≤ d − 1 whi
h gives riseto a maximum (resp. minimum) if k is even (resp. odd). Se
ond, the plane 
urves

C1 := Td(x) + Td(y) (resp. C2 := Td(x) − Td(y)) fa
tor into d
2 irredu
ible 
oni
s(resp. d−2

2 irredu
ible 
oni
s and two lines) if d is even and they both fa
tor into
d−1
2 irredu
ible 
oni
s and a line if d is odd (see [Wer87, p. 34℄).

y = T7(x) TChm2
7 = 0 TChm2

7 = 5z TChm3
7 = 0Figure 3.1. The Geometry of Chmutov's Hypersurfa
es.It is easy to see that the hypersurfa
es TChmn

d are singular exa
tly at the points
(αk1

, . . . , αkn
), 1 ≤ ki ≤ n − 1, where ⌊n

2 ⌋ of the indi
es ki are odd and the otherare even (see �g. 3.1 for an illustration of the 
ase n = 2). All singularities arenodes and their number is
µ(TChmn

d ) = cndn + O(dn−1),where c3 = 3
8 and more pre
isely µ(TChm3

d) = 3
8d2(d−2) if d is even and µ(TChm3

d) =
3
8 (d − 1)3 if d is odd. This showed:(3.24) µA1

(d) '
3

8
d3
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n 39whi
h was the best approximate behaviour for n = 3 known up to this point. Itis easy to 
ompute the exa
t number also in higher dimensions, e.g. for d oddand n even we get µ(TChmn

d ) =
(

d−1
2

)n·
(

n
n/2

) nodes. A 
omputation of Givental
on
erning the approximate behaviour with respe
t to n showed: cn ≈
√

2
πn forlarge n, see [Var84, p. 2782℄ (
ompare (3.18)). When assuming the 
orre
tness ofKreiss's 
onstru
tion, it improves the bounds for low degree d only in a few 
ases:

d 5 6 7 8 9 10 11 12 d

µ(d)(µA(d)) ≤ 31 68 (66) 104 174 246 360 480 645 ≈ 4
9d3

µA1
(d)(µ(d)) ≥ 31 64 81 (90) 160 192 325 375 576 ≈ 3

8
d33.9. Givental's Cubi
s in PnGivental (see [AGZV85b, p. 419℄, [Var84, p. 2782℄) used Chmutov's idea to
onstru
t 
ubi
s in Pn with a number of nodes that almost rea
hed Var
henko'sspe
tral bound. Instead of T
heby
hev Polynomials whi
h are polynomials withfew 
riti
al values in one variable, he used a polynomial with few 
riti
al values intwo variables: To understand the 
onstru
tion, let us start with a regular triangle

R3(x, y) = x3 − 3xy2 + 3x2 + 3y2 − 4whose non-zero 
riti
al point has 
riti
al value +1, see �g. 3.2.
y = T3(x) R3(x, y) = 0 z − R3(x, y) = 0Figure 3.2. The T
heby
hev Polynomial T3(x) of degree threeand a regular triangle, on
e seen in the plane, on
e in spa
e.Then the number of singular points (all are nodes) of the 
ubi
 hypersurfa
e in

Pn with a�ne equation(3.25) Givn
3 :

n
2
−1∑

j=0

(−1)j·(1+(n mod 2))R3(x2j , x2j+1) = −(n mod 2)
T3(xn−1) − 1

2
,is gn ≈ 2n

√
16

3πn for n large. Givental also noti
ed that An(3) ≈ 2n
√

8
πn for n largewhi
h showed: gn

An(3) ≈
√

2
3 ≈ 0.8165. In fa
t, Var
henko's spe
tral bound is exa
tfor 
ubi
s in Pn as Kalker showed only shortly afterwards, see se
tion 3.11.In both 
ited texts [AGZV85b, p. 419℄, [Var84, p. 2782℄, the equations forGivn

3 are only given for n ≡ 0 mod 4, but they list the numbers of nodes that 
anbe obtained using Givental's 
onstru
tion. These numbers 
an be realized using theequations given above:
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n 1 2 3 4 5 6 7 8 9 n

µn(3) = µn
A1

(3) = 1 3 4 10 15 35 56 126 210
(
n+1
⌊n

2
⌋
)

µn(3) ≥ 1 3 4 10 15 33 54 118 189 ≈ 2n
√

16
3πn3.10. Miyaoka's Bound for Surfa
es with Rational Double PointsParallel to Var
henko's spe
tral bound, there appeared another very importantupper bound due to Miyaoka. In [Miy84℄, Miyaoka proved an inequality that he
ould apply to a normal surfa
e fd of degree d in P3 with only rational doublepoints as singularities to prove:(3.26) µDp(d) ≤ 4

9
d(d − 1)2.This is still the best known upper bound for the maximum number of rational doublepoints on a surfa
e in P3 for large degree. Only for odd low degree, Var
henko'sbound is better in some 
ases. The following table gives the bounds known up tothis point:

d 5 6 7 8 9 10 11 12 d

µ(d)(µDp(d)) ≤ 31 68 (66) 104 174 246 360 480 645 ≈ 4
9
d3

µA1
(d)(µ(d)) ≥ 31 64 81 (90) 160 192 325 375 576 ≈ 1

3d3Miyaoka's bound 
an also be applied to 
ompute the maximum number ofsome parti
ular type of rational double points: Let Xp be the germ of a quotientsingularity (C/Gp)0, where Gp is a �nite subgroup of GL(2,C) having the originas its unique �xed point. Let X̃E be the minimal resolution of Xp and E theex
eptional divisor. The Euler numbers e(X̃E) and e(E) 
oin
ide. Put ν(p) :=
e(E) − 1

|Gp| . The non-negative rational number ν(p) is an analyti
 invariant ofthe quotient singularity Xp whi
h is not di�
ult to 
ompute in the 
ases we areinterested in:(3.27) ν(p) = 0 if Xp is smooth,
ν(p) = 2 − 1

j if Xp is an ordinary j-tuple point,
ν(p) = j + 1 − 1

j+1 = j(j+2)
j+1 if Xp is an Aj-singularity.Miyaoka showed: If X is a proje
tive surfa
e with only rational double points

p1, . . . , pk and whose dualizing line bundle OX(Kx) is numeri
ally e�e
tive, then(3.28) k∑

i=1

ν(pi)+e(D) ≤ c2(X̃)−1

3
(KX+D)2 = 12χ(OX)−1

3
(4K2

X+2KXD+D2)for any e�e
tive normal 
rossing divisor D away from the singularity. Now, let
fd ⊂ P3 be a normal surfa
e of degree d with only rational double points p1, . . . , pk.Then (3.28) implies:(3.29) k∑

i=1

ν(pi) ≤
2

3
d(d − 1)2.E.g., as ν(p) ≥ 3

2 for singular points, we get (3.26). For any �xed j ∈ N, (3.27)yields for the maximum number µAj
(d) of Aj-singularities on a surfa
e of degree d



3.11. KALKER'S CUBICS IN P
n 41in P3:(3.30) µAj

(d) ≤ MiyAj
(d) :=

2

3

j + 1

j(j + 2)
d(d − 1)2.There also exists a generalization of Miyaoka's result to more general singularitiesby J. Wahl, see se
tion 4.10 and [Wah94℄.3.11. Kalker's Cubi
s in PnIn his Ph.D. thesis [Kal86℄, Kalker gave examples of 
ubi
s in Pn that showedthat Var
henko's spe
tral bound for the maximum number µn(3) of singularities on
ubi
 hypersurfa
es in Pn was sharp for all n ∈ N:(3.31) µn(3) = An(3) =

(
n + 1⌊

n
2

⌋
)

.He de�ned 
ubi
s Kaln3 as generalizations of the equations of the four-nodal Cayley
ubi
 in P3 (1.2) and C. Segre's 
ubi
 in P4 (1.11) (we 
hose a slightly di�erentnotation for Kalker's equations for odd n in order to underline the similarity to theCayley 
ubi
):(3.32) Kaln3 :

∑n+1
i=0 x3

i = 0,
∑n+1

i=0 xi = 0, for n even,

∑n
i=0 x3

i + 1
4x3

n+1 = 0,
∑n+1

i=0 xi = 0, for n odd.The singularities of these 
ubi
s in Pn are exa
tly the points in whi
h the twohypersurfa
es in Pn+1 are tangent to ea
h other (�g. 3.3).
Kal13 ⊂ P1 Kal23 ⊂ P2Figure 3.3. The Geometry of Kalker's Hypersurfa
es. Kal13 ⊂ P1
onsists of two points, one doubled: In the proje
tive view one 
ansee the (bla
k) fermat 
ubi
 x3

0 +x3
1 + 1

4x3
2 tou
hing the hyperplane

x0 + x1 + x2 ≃ P1 in one point and meeting it transversally inanother one. To illustrate the 
onstru
tion of the Kalker 
ubi
Kal23 ⊂ P2 whi
h takes pla
e in P3, we take the a�ne 
hart x3 = 1.Here one sees the three points in whi
h the hyperplane x0 + x1 +
x2 + 1 ≃ P2 tou
hes the 
ubi
 x3

0 + x3
1 + x3

2 + 13. Kal23 
onsists ofthree lines.The following table lists the numbers of nodes on Kalker's hyper
ubi
s. This isone of the very rare 
ases in whi
h we know the maximum number of singularities:
n 0 1 2 3 4 5 6 7 8 9 10 n

µn(3) = µn
A1

(3) = 0 1 3 4 10 15 35 56 126 210 462
(
n+1
⌊ n

2
⌋
)



42 3. MODERN METHODS (1960�1990)Of 
ourse, this 
onstru
tion 
an also be generalized to higher degrees, althoughKalker did not mention it be
ause he was only interested in 
ubi
s. Moreover, this
onstru
tion does not seem to be very good for d > 3.3.12. Two Nodal Quinti
s in P4Sin
e the end of the 19th 
entury, the maximum numbers of nodes on a three-fold in P4 of degree ≤ 4 are known, see 1.5 on page 18. We have just seen thatVar
henko's bound is exa
t for 
ubi
s in any dimension. In 1985 and 1986, Hirze-bru
h [Hir87℄ and S
hoen [S
h86℄ 
onstru
ted the �rst examples that 
ame 
lose toVar
henko's upper bound (se
tion 3.7 on page 35) for quinti
s in P4: µ4(5) ≤ 135.S
hoen's quinti
(3.33) S
h4
5 :

4∑

i=0

x5
i − 5

4∏

i=0

xi = 0has exa
tly 125 nodes (see also [Wer87, p. 84℄).He was only interested in threefolds, but it is obvious how his 
onstru
tion 
anbe generalized to higher dimensions. But the variants S̃
hd−1

d in Pd−1 given byS̃
hd−1

d :
∑d−1

i=0 xd
i − d

∏d−1
i=0 xi = 0 have only dd−2 = dn−1 nodes.Hirzebru
h's quinti
 
an also be generalized to higher dimensions and otherdegrees. In fa
t, the 
onstru
tion is exa
tly Givental's (3.25), but instead of atriangle R3(x, y), he took a �ve-gon

R5(x, y) = x5 − 10x3y2 + 5xy4 − 5x4 − 10x2y2 − 5y4 + 20x2 + 20y2 − 16(see �g. 3.4) and Hirzebru
h only applied it in four-dimensional spa
e be
ause hewas only interested in quinti
 threefolds. The (d − 1)2 = 16 distin
t 
riti
al pointsof R5(x, y) lie on three di�erent 
riti
al levels: (
5
2

)
= 10 have 
riti
al value 0 (theinterse
tions of the �ve lines), 5 with 
riti
al value v1 (within ea
h triangle) and 1with 
riti
al value v0 6= 1 (the 
enter).

R5(x, y) = 0 z − R5(x, y) = 0Figure 3.4. The regular �ve-gon, on
e seen in the plane, on
e in spa
e.It is now 
lear that the quinti
 in P4 given by(3.34) Hirz45 : R5(x0, x1) − R5(x2, x3) = 0has exa
tly 126 ordinary nodes, 100 
oming from the interse
tion of two lines, and
25 + 1 others. Thus:(3.35) µ4

A1
(5) ≥ 126.



3.13. THE DEFECT AND THE EXISTENCE OF CERTAIN NODAL HYPERSURFACES 43In view of Givental's idea (3.25), this 
onstru
tion 
an also be generalized tohigher dimensions and degrees. Although we 
ould not �nd this generalization inthe literature, its basi
 idea was 
ertainly known to those working on the subje
tat that time. We denote by R5(x, y) the regular �ve-gon normalized s.t. the 
riti
alvalue over the origin is +1. Noti
e that then the other non-zero 
riti
al point is −1.We 
an translate Givental's equations (3.25) for 
ubi
s word by word:(3.36) GHn
5 :

n
2
−1∑

j=0

(−1)j·(1+(n mod 2))R5(x2j , x2j+1) = −(n mod 2)
T5(xn−1) − 1

2
.For low n, we get the following numbers of nodes on quinti
s in Pn:

n 1 2 3 4 5 6 7 8 9

µn(5) ≤ 2 10 31 135 456 1918 6728 27876 100110

µn
A1

(5) ≥ 2 10 31 126 420 1620 5750 23126 78300If we repla
e in GHn
5 the polynomial R5(x, y) by another polynomial of degree

d whi
h has exa
tly three 
riti
al values of the form 0, 1,−1 then the formula 
anbe used verbatim. Instead, if it is not possible to bring the 
riti
al values of apolynomial into this form then another formula is better, see e.g. 4.1 on page 45.3.13. The Defe
t and the Existen
e of Certain Nodal Hypersurfa
esIn [Cle83℄, Clemens introdu
ed the notion of defe
t δ(X) := b4(X) − b2(X) ofa nodal hypersurfa
e X in Pn, where bi denotes the ith Betti number. If X deforms,but maintains its number of nodes, the defe
t remains 
onstant.Based on this arti
le, Bor
ea [Bor90℄ 
onsidered the spe
ial 
ase of nodal three-folds with trivial dualizing sheaf and was able to interpret the defe
t as follows: Let
X be a quinti
 threefold with µ(X) nodes and defe
t δ(X). Then there exist quinti
swith 0 ≤ k ≤ µ(X) nodes with at most δ(X) ex
eptions. The same holds for doublesolids rami�ed over a nodal o
ti
 surfa
e. This result 
an be seen as a generaliza-tion of a result of Greuel/Karras in [GK89℄ whi
h states that hypersurfa
es withall lower numbers of nodes exist if X is unobstru
ted, i.e. if a 
ertain 
ohomologygroup vanishes. Using the defe
t, their 
ondition 
an be written as δ(X) = 0.Several people 
omputed the defe
t in some spe
ial 
ases. E.g., Werner [Wer87℄treated the 
ase of several variants of Chmutov's o
ti
s whi
h are of the form pre-sented in se
tion 3.8 modulo sign 
hanges. Among these, there is a 108-nodalexample with defe
t δ = 0. Using Bor
ea's previous result this shows the existen
eof o
ti
s with 0, 1, . . . , 108 nodes. Another of the o
ti
s has 144 nodes and defe
t
δ = 9. Thus between 108 and 144 at most nine gaps may appear. S
hoen's quinti
in P4 (se
tion 3.12 on the fa
ing page) has 125 nodes and defe
t δ = 24. Thus,up to 125 at most 24 gaps may exist, but most of them have to o

ur for largenumbers of nodes be
ause Bor
ea gives an 100-nodal example with defe
t δ = 3. Toour knowledge it has not been 
he
ked yet whi
h numbers of nodes a
tually o

uron o
ti
 surfa
es or quinti
 threefolds. It might be possible to apply our methodspresented in part 2 of this thesis for this purpose be
ause most of the examples 
an
ertainly be found in some obvious families.



Endraÿ's 168-nodal o
ti
 from 1996. He lo
ated it within a �ve-parameter familyof D8 ×Z2-symmetri
 112-nodal surfa
es of degree eight.



CHAPTER 4Re
ent Results (1991 until now)Sin
e Miyaoka's and Var
henko's upper bounds for the maximum possible num-ber of nodes from the early 1980's there has not yet appeared any essentially newidea for produ
ing new upper bounds. But sin
e the early 1990's several new lowerbounds have been found.First of all, Chmutov improved his own general 
onstru
tion in the 
ase of nodalsurfa
es and threefolds. Both families are still the best known ones for generaldegree.Apart from that, several spe
ial 
ases have been improved. E.g., van Straten
onstru
ted a quinti
 in P4 with 130 nodes, and Barth 
onstru
ted his famous sexti
in P3 with 65 nodes. Using methods similar to Beauville's proof of µA1
(5) = 31,Ja�e and Ruberman were then able to show that µA1

(6) = 65. So, µA1
(d) is knownfor d ≤ 6.In the 
ases of degree 8, 10, 12 there also appeared 
onstru
tions ex
eedingChmutov's general lower bound. But for odd degree d > 5 no su
h surfa
e wasfound.Parallely, people started to 
onsider also other singularities of small degree.E.g., Barth 
onstru
ted a quarti
 with the maximum number of 8 
usps and aquinti
 with 15 
usps. Based on results of Nikulin and Urabe on K3 latti
e theory,Yang 
ompleted the enumeration of all 
ombinations of singularities on quarti
s in

P3 using 
omputers.4.1. Chmutov's Hypersurfa
es using Folding PolynomialsWhen trying to generalize Givental's 
ubi
s from se
tion 3.9 on page 39 in the
ase of surfa
es to higher degree d one realizes the following. For the number of nodeson the resulting surfa
es only the 
riti
al points with two di�erent 
riti
al valueson a plane 
urve are relevant. This immediately leads to the question what themaximum number of 
riti
al points on two 
riti
al levels of a plane 
urve of degree
d is. Of 
ourse, a trivial upper bound is 2·

(
d
2

)
≈ d2. Chmutov su

eeded in provinga stronger result [Chm84℄ similar to Var
henko's spe
tral bound. In [Chm95℄ hementioned the spe
ial 
ase of non-degenerate 
riti
al points for whi
h this leads toan upper bound of ≈ 7

8d2 
riti
al points on two levels. As he remarked in [Chm92℄,this bound immediately implies a bound for the maximum number µ3sep(d) of nodeson a surfa
e of degree d of the form of Givental's 
ubi
s p(x, y)+ q(z) = 0 (he 
alledthem surfa
es in separated variables):(4.1) µ3sep(d) /
7

16
d3.This is less than Miyaoka's upper bound: 7

16d3 = 63
144d3 < 64

144d3 = 4
9d3. Thus, it isnot possible to rea
h Miyaoka's upper bound with surfa
es in separated variables.45



46 4. RECENT RESULTS (1991 UNTIL NOW)In view of this upper bound, it is natural to ask how 
lose one 
an get. Weare thus looking for plane 
urves with very few di�erent 
riti
al values (in fa
t, theminimum is three for plane 
urves of degree d ≥ 4). The �rst remark is that regular
d-gons have exa
tly (

d
2

) 
riti
al values with 
riti
al value 0 and only d 
riti
al valueson the other 
riti
al levels.Chmutov [Chm92℄ realized that the so-
alled folding polynomials FA2

d (x, y)asso
iated to the root system A2 (see [Wit88℄ and also [HW88, EL82℄) are verywell-suited for this purpose. In fa
t, they give ≈ 5
6d2 
riti
al points on two levels. In[Chm95℄, Chmutov even 
onje
tured that this is the maximum number of 
riti
alpoints on two 
riti
al levels. The folding polynomials FA2

d (x, y) 
an be de�ned asfollows:
(4.2) F

A2

d (x, y) := 2+det

0

B

B

B

B

B

B

B

B

B

B

@

x 1 0 · · · · · · · · · 0

2y x
. . . . . . ...

3 y
. . . . . . . . . ...

0 1
. . . . . . . . . . . . ...... . . . . . . . . . . . . . . . 0... . . . . . . . . . . . . 1

0 · · · · · · 0 1 y x

1

C

C

C

C

C

C

C

C

C

C

A

+det

0

B

B

B

B

B

B

B

B

B

B

@

y 1 0 · · · · · · · · · 0

2x y
. . . . . . ...

3 x
. . . . . . . . . ...

0 1
. . . . . . . . . . . . ...... . . . . . . . . . . . . . . . 0... . . . . . . . . . . . . 1

0 · · · · · · 0 1 x y

1

C

C

C

C

C

C

C

C

C

C

A

.These polynomials are generalizations of the T
heby
hev polynomials in manysenses (see [Wit88, HW88, EL82℄). The property whi
h is important for Chmutovis the fa
t that they have very few (in fa
t, three) di�erent 
riti
al values. He showedthat su
h a polynomial FA2

d had (
d
2

) 
riti
al points with 
riti
al value 0 and(4.3) 1
3d(d − 3) if d ≡ 0 mod 3,
1
3 (d(d − 3) + 2) otherwise
riti
al points with 
riti
al value −1. The other 
riti
al points have 
riti
al value

8. As one might guess from the number (
d
2

) of 
riti
al points on the level 0, thepolynomial FA2

d 
onsists in fa
t of d lines.The number of nodes of Chmutov's surfa
es de�ned by the a�ne equation(4.4) Chm3
d : FA2

d (x0, x1) +
1

2
(Td(x2) + 1) = 0
an easily be 
omputed using (4.3):(4.5) 1

12

(
5d3 − 13d2 + 12d

) if d ≡ 0 mod 6,
1
12

(
5d3 − 13d2 + 16d− 8

) if d ≡ 2, 4 mod 6,
1
12

(
5d3 − 14d2 + 13d− 4

) if d ≡ 1, 5 mod 6,
1
12

(
5d3 − 14d2 + 9d

) if d ≡ 3 mod 6.Thus:(4.6) µA1
(d) '

5

12
d3.For low even degree, Kreiss's 
onstru
tion (if 
orre
t) is at least as good as Chmu-tov's: µ(Chm3

8) = 321 < 325 and for µ(Chm3
12) = 576.

d 5 6 7 8 9 10 11 12 d

µ(d)(µDp(d)) ≤ 31 68 (66) 104 174 246 360 480 645 ≈ 4
9d3

µA1
(d)(µ(d)) ≥ 31 64 93 160 216 325 425 576 ≈ 5

12
d3



4.2. BARTH'S 31-NODAL QUINTIC IN P
3 47Of 
ourse, the folding polynomials FA2

d (x, y) 
an also be used in higher di-mensions (
ompare Hirzebru
h's quinti
 (3.34) and Givental's 
ubi
s (3.25)). In[Chm92℄ Chmutov only mentioned the 
ase P4 in whi
h Chm4
d := FA2

d (x0, x1) −
FA2

d (x2, x3) gives threefolds with approximately 7
18d4 nodes. With Var
henko'sspe
tral bound, we get:

d 3 4 5 6 7 8 9 10 11 12

µ4(d) ≤ 10 45 135 320 651 1190 2010 3195 4840 7051

µ4
A1

(d) ≥ 10 45 126 277 566 1029 1720 2745 4150 6013In view of the equations of Givental's 
ubi
s in Pn, we 
an easily write downequations for hypersurfa
es with many nodes in Pn using the folding polynomials.As we 
ould not �nd them in the literature, we give them here expli
tly:(4.7) Chmn
d :

⌊n
2
⌋−1∑

j=0

(−1)jFA2

d (x2j , x2j+1) = (n mod 2)·1
2
(Td(xn−1) + 1).In some 
ases, we get more nodes if we repla
e the sign (−1)j by 1, e.g. if n = 5.Furthermore, for small degree, it is easy to �nd out whi
h are the best plane 
urvesfor this purpose. E.g., in degree 4, there is a better 
hoi
e than FA2

4 : The unionof four lines, s.t. two of non-singular 
riti
al points have 
riti
al value −1 and theremaining one has 
riti
al value +1. Of 
ourse, Chmutov's upper bound for surfa
esin separated variables also generalizes to higher dimensions.But noti
e that Chmutov's older 
onstru
tion (se
tion 3.8 on page 38) is asymp-toti
ally better than his new 
onstru
tion for any �xed n ≥ 5 and large d. Intu-itively, the reason for this is that the two non-zero 
riti
al values of the polynomials
Td(x) + Td(y) also sum up to zero; this is not the 
ase for FA2

d . In P5, we get thefollowing table for low degree:
d 3 4 5 6 7 8 9

µ5(d) ≤ 15 126 456 1506 3431 7872 14412

µ5
A1

(d) ≥ 15 104 420 1080 2583 5760 103684.2. Barth's 31-nodal Quinti
 in P3Although Barth only published his 
onstru
tion of a 31-nodal quinti
 in P3as a preprint, it is quite interesting and we thus des
ribe it here shortly (a longerexposition 
an be found in [End96℄).As a starting point, Barth took a family of quinti
s ∏4
i=0 Pi(x, y)−az·Q2 
omingfrom Rohn's 
onstru
tion 1.3 on page 16. In order to be able to redu
e the problemin three-spa
e to a planar one, he took planes Pi and a quadri
 Q whi
h admit thesymmetry D5 of a �ve-gon: Fa,b,d := P − az·Q2, where(4.8) P :=

∏4
j=0

(
cos

(
2πj
5

)
x + sin

(
2πj
5

)
y − w

)

= 1
16

(
x5 − 5x4w − 10x3y2 − 10x2y2w + 20x2w3

+5xy4 − 5y4w + 20y2w3 − 16w5
)
,

Q := x2 + y2 + bz2 + zw + dw2,and where a, b, d ∈ C are still to be determined.



48 4. RECENT RESULTS (1991 UNTIL NOW)
Figure 4.1. Barth's Togliatti quinti
 with 31 nodes and its re-stri
tion to the plane y = 0. Noti
e that this plane quinti
 
onsistsof a line and an irredu
ible quarti
. This latter has three nodestwo of whi
h are solitary (also 
alled A+

1 ) points.A generi
 member of this family has 20 nodes. Be
ause of the symmetry, fourof these are in ea
h of the symmetry planes
Ej :=

{
sin

(2πj

5

)
x = cos

(2πj

5

)
y

}
, j = 0, 1, . . . , 4.In fa
t, the symmetry allowed Barth to restri
t his attention to one of these planes,say E0. Every node N of the plane 
urve Ca,b,d := E0 ∩ Fa,b,d indu
es an orbit oflength �ve if N does not lie on the axes x = y = 0. In order to get 31 ordinary doublepoints, we thus have to �nd parameters a, b, d, s.t. the plane quinti
 Bar31 := Ca,b,dhas one additional node on the axes x = y = 0 and two additional nodes away fromthis axes.But an irredu
ible quinti
 
an have at most six nodes, s.t. our 
urve Ca,b,d hasto be redu
ible in order to have the seven nodes that we need. In fa
t, a lengthyanalysis shows that the 
urve is a union of a line and a three-nodal quarti
 with theparameters

a = − 5

32
, b = −5 −

√
5

20
, d = −(1 +

√
5).The only node on the axes x = y = 0 
omes from the interse
tion of the line withthe quarti
. The surfa
e Fa,b,d 
orresponding to these parameters has therefore

20 + 2 · 5 + 1 = 31 nodes, see �g. 4.1.4.3. Van Straten's 130-nodal Quinti
 in P4As we have seen in se
tion 1.5 on page 18, C. Segre's 10-nodal 
ubi
 and the
45-nodal Burkhardt Quarti
 in P4 have ni
e Σ6-symmetri
 equations. In [vS93℄,van Straten analyzed all singular examples in the spa
e of all Σ6-symmetri
 quinti
sin theP4 given by 
utting theP5 by the hyperplane σ1(x0, . . . , x5) = 0. It is spannedby σ5(x0, . . . , x5) and σ2(x0, . . . , x5)σ3(x0, . . . , x5). Besides several other interestingquinti
s, this pen
il(4.9) vS(α:β) := α·σ5(x0, . . . , x5) + β·σ2(x0, . . . , x5)·σ3(x0, . . . , x5)
ontains the 130-nodal example vS(1:1) showing (
ompare se
tion 3.12):(4.10) µ4

A1
(d) ≥ 130.



4.4. GORYUNOV'S SYMMETRIC QUARTICS IN P
n 49The nodes of this quinti
 form three orbits under the operation of the Σ6 on the
oordinates:(4.11) (1 : 1 : 1 : −1 : −1 : −1) 10 nodes,

(1 : 1 : −1 : −1 :
√
−3 :

√
−3) 90 nodes,

(1 : 1 : 1 : 1 :
√
−3 − 2 :

√
−3 − 2) 30 nodes.As one might expe
t, this 130-nodal quinti
 has some ni
e properties similar tothose of C. Segre's 
ubi
 and the Burkhardt quarti
. But in 
ontrast to these twovarieties in P4, it is not invariant under the simple group of order 25920.4.4. Goryunov's Symmetri
 Quarti
s in PnInspired by the 
onstru
tion of the 130-nodal van Straten quinti
, Goryunov[Gor94℄ looked at all nodal quarti
s and 
ubi
s in Pn whi
h are invariant underthe re�e
tion groups An or Bn.Of 
ourse, in the 
ase of 
ubi
s in Pn, his examples 
ould not give more nodesthan Kalker's examples (se
tion 3.11 on page 41) be
ause those already rea
hedVar
henko's upper bound. In fa
t, Goryunov found isomorphi
 
ubi
s using hismethod.But his Bn-symmetri
 quarti
s gave rise to new lower bounds. His 
onstru
tionis based on his observation that one 
an reformulate the 
ondition that a hyper-surfa
e in Pn has a singularity in the 
ase of hypersurfa
es symmetri
 under the
onsidered re�e
tion groups: It turned out to be equivalent to the 
ondition thatthe 
orresponding hypersurfa
e in the orbit spa
e is nontransversal to the dis
rim-inant of the group. He thus 
onstru
ted his examples with many nodes by �ndinga hypersurfa
e in the orbit spa
e that is nontransversal to the strata of very longorbits.Using this method he showed that the Bn+1-symmetri
 hypersurfa
e(4.12) Goryn

4 (a) : 2·(a + 1) ·
( ∑

0≤i<j≤n

x2
i x

2
j

)
− a·

( ∑

0≤j≤n

x2
j

)2

= 0has exa
tly 2a
(
n+1
a+1

) nodes. This number is maximal for a = ⌊ 2n
3 ⌋ and a = ⌊ 2n+1

3 ⌋whi
h both yield:(4.13) µn
A1

(4) ≥ 2⌊ 2n

3
⌋
(

n + 1

⌊2n
3
⌋ + 1

)
.His An+1-symmetri
 quarti
s ex
eed this number only for n = 4 (this gives the

45-nodal Burkhardt Quarti
) and n = 7. We obtain the following table (withVar
henko's upper bound):
n 2 3 4 5 6 7 8 9 10 n

µn(4) ≤ 6 16 45 126 357 1016 2907 8350 24068 ≈
√

3
2

3n+1

√
πn

µn(4) ≥ 6 16 45 120 336 938 2688 7680 21120 ≈ 3
4

3n+1

√
πnIn table [Gor94, p. 148℄, Goryunov listed Chmutov's old hypersurfa
es (se
-tion 3.8 on page 38) as the previously known best lower bounds although the gen-eralization of Chmutov's new 
onstru
tion (se
tion 4.1 on page 45) leads to greaternumbers of nodes for small n. But also in 
omparison to these, Goryunov's examplesare better for all n.
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osahedral-Symmetri
 Surfa
es and µA1
(6) = 65Similar to his 
onstru
tion of the 31-nodal quinti
 in P3, Barth also used theidea to analyze a pen
il of symmetri
 surfa
es to treat the 
ase of degree six andten [Bar96℄. The main advantage of these two 
ases is the fa
t that one 
an usean even larger symmetry group than in the 
ase of the �ve-gon-symmetry for thequinti
: Barth's surfa
es of degree 6 and 10 are invariant under the symmetry groupof the i
osahedron in eu
lidean three-spa
e R3 whi
h 
ontains the dihedral group

D5 as a subgroup.Let τ := 1
2 (1 +

√
5). The six planes through the origin whi
h are orthogonalto the six diagonals of the regular i
osahedron are given by the a�ne equation

P := (τ2x2 − y2)(τ2y2 − z2)(τ2z2 − x2). Consider the family
Fα := P − α·Q2,where Q := x2 + y2 + z2 − 1 is a sphere and α ∈ C is a parameter still to bedetermined (
ompare Rohn's 
onstru
tion in se
tion 1.3 on page 16).For generi
 values of α 6= 0, the surfa
e Fα has 45 singularities. 30 of these 
omefrom the interse
tion of P and Q as in Rohn's 
onstru
tion, 15 are at in�nity. Barththen enfor
ed a third orbit of 20 singularities on the ten lines joining two opposit
enters of fa
es of the i
osahedron. Be
ause of the symmetry he 
ould restri
t the
omputations to one of these lines whi
h led to α = 1

4 (2τ + 1). Altogether, heobtained a surfa
e Bar65 := F 1
4
(2τ+1)with 30 + 15 + 20 = 65 nodes (see �g. 4.2).A similar 
onstru
tion gave a surfa
e Bar345 of degree 10 with 345 nodes (seealso �g. 4.2). Its equation is as follows:(4.14) 8(x2 − τ 4y2)(y2 − τ 4z2)(z2 − τ 4x2)

“

x4 + y4 + z4 − 2(x2y2 + y2z2 + z2x2)
”

+(3 + 5τ )(x2 + y2 + z2
− 1)2

“

x2 + y2 + z2
− (2 − τ )

”2

= 0.Taking into a

ount both surfa
es we have the new lower bounds:(4.15) µA1
(6) ≥ 65, µA1

(10) ≥ 345.

Figure 4.2. Barth's 65-nodal sexti
 and 345-nodal de
ti
.As already mentioned in se
tion 3.5 on page 34, the existen
e of the 65-nodalsexti
 was even more astonishing in view of Catanese's and Ceresa's 
laimed upperbound for surfa
es 
onstru
ted using B. Segre's 8-fold 
overing method. In fa
t,
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an see from the equations, Barth's sexti
 is of this type, but ex
eeds thisbound. And indeed, by analyzing his 
onstru
tion 
arefully, Barth was able to tra
edown the error in Catanese's and Ceresa's reasoning.An interesting fa
t was 
omputed by van Straten using deformation theoryand 
omputer algebra (see next se
tion): The Barth sexti
 is 
ontained in a three-parameter family of 65-nodal sexti
s. Furthermore, van Straten suggested to tryto 
onstru
t this family expli
itly using Gallarati's 
onstru
tion (se
tion 2.5 onpage 24). This was done by Pettersen in his Ph.D. thesis [Pet98℄.Only very shortly after Barth's dis
overy of the 65-nodal sexti
, Ja�e andRuberman [JR97℄ were able to show µA1
(6) ≤ 65 using arguments similar toBeauville's (se
tion 3.3 on page 33) whi
h �nally showed:(4.16) µA1

(6) = 65.After the appearan
e of this result in degree six, Endraÿ 
onsidered even sets ofnodes and their 
odes related to it in more generalality, see [End98, End99℄. Butthis did not allow him to dedu
e new upper bounds for higher degrees.4.6. Deformations of Nodal Hypersurfa
esVan Straten's 
omputation of the fa
t that Barth's 65-nodal sexti
 varies in athree-parameter family is an appli
ation of his deformation theory for nodal hyper-surfa
es in Pn whi
h he developped in a still un�nished paper [vS94℄. His theory isbased on the deformation theory for non-isolated singularities whi
h he developpedin [dJvS90℄ together with de Jong.Van Straten 
onsidered the a�ne 
one over the singular lo
us Σ := Σ(X) ofthe nodal hypersurfa
e X whi
h is given by a homogenous polynomial X ∈ P :=
C[x0, . . . , xn] of degree d. This allowed him to apply the above deformation the-ory of non-isolated singularities. The deformation fun
tor Def(X, Σ) 
onsists ofdeformations of the proje
tive hypersurfa
e X whi
h indu
e analyti
ally trivial de-formations of the multigerm of X around Σ. T 1(X, Σ) is the spa
e of in�nitesimaldeformations and T 2(X, Σ) the obstru
tion spa
e.We get for the in�nitesimal embedded deformations T 1(X) = (P/J)d, where
J := Ja
(X) := ( ∂X

∂x0
, . . . , ∂X

∂xn
) denotes the ja
obian ideal of X . For the in�nitesimaldeformations of the multigerm (X, Σ), we have: T 1(O(X,Σ)) = ⊕x∈ΣT 1(OX,x). As

Σ is redu
ed in our 
ase, van Straten 
ould apply some vanishing results whi
h makea long exa
t sequen
e from [dJvS90℄ 
ollaps to:
0 → T 1(X, Σ) → T 1(X) → T 1(O(X,Σ)) → T 2(X, Σ) → 0.We denote the saturation of J w.r.t. m := (x0, . . . , xn) by I := J : m

∞. Van Stratenargued that the above sequen
e is isomorphi
 to the degree d part of the sequen
eof graded P -modules:
0 → H0

m
(P/J) → P/J → P/I → H1

m
(P/J) → 0.This immediately yields:

dimT 1(X, Σ) − dimT 2(X, Σ) = dim(P/J)d −
∑

x∈Σ

τ(X, x)

=

(
n + d

d

)
− (n + 1)2 − #(nodes(X)).

(4.17)
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m

(P/J) = I/J , we get from the above exa
t sequen
es:(4.18) T 1(X, Σ) = (I/J)d.We 
an thus 
ompute dimT 1(X, Σ) using 
omputer algebra and � via (4.17) �also dimT 2(X, Σ) whi
h represents the number of independent 
onditions imposedon a polynomial of degree d to pass through the nodes Σ.As an example, let us 
onsider the 
ase of nodal sexti
s f6. It is known that
#(nodes(f6)) ≤ 65 as we have seen in the previous se
tion. As dimT 2(f6, Σ) ≥ 0,we obtain: dimT 1(f6, Σ) ≥ 68 − 65 = 3. Indeed, using Singular we 
an 
omputevia (4.18) that dimT 1(Bar65, Σ) = 3 and thus dimT 2(Bar65, Σ) = 0 for Barth's
65-nodal sexti
 Bar65 (se
tion 4.5 on page 50).Let us mention some other immediate 
onsequen
es of the linear relation (4.17)between dim T 1(X, Σ) and dimT 2(X, Σ):Corollary 4.1. With the notations above, we have:(1) If there exists a rigid nodal septi
 f7 in P3 (i.e. dimT 1(f7, Σ(f7)) = 0)then it has exa
tly 104 nodes and dimT 2(f7, Σ(f7)) = 0.(2) If we have dim T 2(fd, Σ(fd)) ≤ c for some nodal hypersurfa
e fd of degree

d in Pn for some c ∈ N0 then
#(nodes(fd)) ≤ dim(P/J)d + c =

(
n + d

d

)
− (n + 1)2 + c.(3) In parti
ular, the number of nodes of an unobstru
ted nodal hypersurfa
e

fd of degree d in Pn is bounded by:
#(nodes(f)) ≤

(
n + d

d

)
− (n + 1)2.In 
hapter 10 on page 119, we list dimT 1(fd, Σ(fd)) and dimT 2(fd, Σ(fd)) formany nodal hypersurfa
es fd of degree d in Pn. From these 
omputations, we
an observe many interesting things. E.g., the 168-nodal o
ti
 presented in thefollowing se
tion is the only known rigid o
ti
 although the restri
tion from the
orollary allows the existen
e of 149-nodal rigid o
ti
s. Why?If dimT 2(X, Σ) = 0 for some nodal hypersurfa
e X then any lo
al deformation
an be globalized to X . Thus, the existen
e of a nodal hypersurfa
e X implies theexisten
e of hypersurfa
es with any non-negative number ≤ #(nodes(X)) of nodes.4.7. Endraÿ's 168-nodal O
ti
sBarth's 
onstru
tion of the 65-nodal sexti
 and the 345-nodal de
ti
 showed thatRohn's and B. Segre's 
onstru
tions were even more powerful than the geometershad thought before. So, Barth's Ph.D. student Endraÿ 
onsidered surfa
es of degree

8 whi
h arise in the same way. The main result of his thesis [End97, End96℄ wasthe 
onstru
tion of on o
ti
 with 168 nodes.He started with a D8-invariant 9-parameter family F := P − Q of surfa
es ofdegree 8, where(4.19) P :=
∏7

j=0

(
cos

(
πj
4

)
x + sin

(
πj
4

)
y − w

)

= 1
4 (x2 − w2)(y2 − w2)

(
(x + y)2 − 2w2

) (
(x − y)2 − 2w2

)
,

Q := a(x2 + y2)2 + (x2 + y2)(bz2 + czw + dw2)

+ez4 + fz3w + gz2w2 + hzw3 + iw4.
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Figure 4.3. One of the two 168-nodal Endraÿ O
ti
s.For a generi
 
hoi
e of the parameters a, b, . . . , i ∈ C, this has (

8
2

)
· 4 = 112 nodes(
ompare Rohn's 
onstru
tion, se
tion 1.3). For the analysis of the family, Endraÿ
ould restri
t to two planes be
ause of the symmetry of the 
onstru
tion. Aftera 
areful analysis of the 
urves in these planes, he �nally found the parameters

a = −4(1 +
√

2), b = 8(2 +
√

2), c = 0, d = 2(2 + 7
√

2), e = −16, f = 0,
g = 8(1 − 2

√
2), h = 0, i = −(1 + 12

√
2) whi
h lead to on o
ti
 Endr168 with 168nodes:(4.20) µA1

(8) ≥ 168.In fa
t, by repla
ing every √
2 by −

√
2 Endraÿ got another 168-nodal o
ti
 Endr′168whi
h is not proje
tively isomorphi
 to the �rst one.Van Straten 
omputed, again using deformation theory (se
tion 4.6), that thiso
ti
 is rigid. In fa
t, this is still the only rigid nodal o
ti
 and also the rigid nodalsurfa
e of the smallest degree known up to now. Van Straten also found an o
ti
with many nodes within the above family; his example has 165 nodes.4.8. Yang's List of Rational Double Points on Quarti
sThe 
lassi�
ation of all 
ubi
 surfa
es with respe
t to the singularities o

ur-ring on them was already found in the 19th 
entury (see se
tion 1.1 on page 13 and[BW79℄ for a modern treatment). Although the greatest number of singularities ona quarti
 surfa
e was also already determined at that time by Kummer, the 
lassi�-
ation of all quarti
 surfa
es with respe
t to their singularities was only 
ompletedin 1997 by Yang [Yan97℄.In a series of papers in the 1980's, Urabe had started to try to 
lassify allquarti
 surfa
es in P3. He had su

eeded in the 
ase of non-normal quarti
 surfa
es[Ura86a℄. Urabe had also performed the major steps for quarti
 surfa
es with atleast one singularity whi
h is not a rational double point, see [Ura85, Ura86b,Deg90℄. For the only remaining 
ase of quarti
s with only rational double points,Urabe had managed to redu
e the problem to a purely latti
e-theoreti
 problem[Ura87, Ura90℄.Using Urabe's results together with some K3 latti
e theory due to Nikulin[Nik80℄, Yang was �nally able to determine all possible 
ombinations of rationaldouble points on a quarti
 surfa
es mainly by applying Nikulin's method system-ati
ally using a 
omputer [Yan97℄. This 
ompleted the 
lassi�
ation of all quarti
surfa
es with respe
t to the singularities o

urring on them more than one-hundredyears after the same had been done for 
ubi
 surfa
es.



54 4. RECENT RESULTS (1991 UNTIL NOW)To give some examples, the result shows that µ3
A2

(4) = 8, i.e. the maximumnumber of 
usps on a quarti
 is eight. µ3
A2

(4) ≤ 8 already follows from Var
henko'sbound, but to our knowledge, the other inequality µ3
A2

(4) ≥ 8 had not been knownpreviously. Shortly afterwards, Barth obtained the same result by another method[Bar00b℄ � he also gave expli
it equations for 8-
uspidal quarti
s in P3.Another interesting extremal 
ase is the highest Aj-singularity that 
an o

uron a quarti
. Either from Var
henko's spe
tral bound or via Nikulin's K3 latti
etheory it follows that there 
annot be su
h a singularity for j > 19. From Nikulin'sresults, one 
an show in an abstra
t way that a quarti
 with an A19 exists (e.g., bylooking at Yang's list). But it is even possible to write down an expli
it formula.This was already done in 1982 by Kato and Naruki [KN82℄, basi
ally using expli
itmethods similar to those whi
h had allowed S
hlä�i to 
onstru
t a 
ubi
 surfa
ewith an A5-singularity whi
h we mentioned at the end of se
tion 1.1.1 togetherwith results of [BW79℄:(4.21) 16(x2 + y
2) + 32xz

2
− 16y

3 + 16z
4
− 32yz

3 + 8(2x
2
− 2xy + 5y

2)z2

+ 8(2x
3
− 5x

2
y − 6xy

2
− 7y

3)z + 20x
4 + 44x

3
y + 65x

2
y
2 + 40xy

3 + 41y
4 = 0.4.9. Sarti's 600-nodal Dode
ti
The main result of Sarti's thesis (she is another Ph.D. student of Barth) wasthe 
onstru
tion of a surfa
e of degree 12 with 600 nodes, see [Sar01℄. This surfa
eis also invariant under a large symmetry group, namely the re�e
tion group of theregular four-dimensional 600-
ell. In fa
t, Goryunov had already announ
ed theexisten
e of a 600-nodal surfa
e invariant under this group in 1996. But he had notbeen able to give expli
it equations be
ause the equations of the invariant S12 ofdegree 12 had not been known at that time.This and the other invariants of the group of the 600-
ell were found by Sartiin her Ph.D. thesis. We refer to [Sar01, p. 438℄ for the very lengthy equation of

S12. Given this, she studied the pen
ilSa12(λ) : S12(x, y, z, w) + λ(x2 + y2 + z2 + w2)6and found the parameters λ ∈ C, s.t. Sa12(λ) admits singularities. It turned outthat Sa12(λ) has orbits of nodes of lengths 300, 600, 360, 60 for λ = − 3
32 , − 22

243 ,
− 2

25 , 0, respe
tively and no other singularities. Thus, Sa12(− 22
243 ) is a surfa
e in P3with 600 nodes, see �g. 4.4 on the next page:(4.22) µA1

(12) ≥ 600.In an unpublished preprint, Stagnaro [Sta01℄ 
onstru
ted a surfa
e of degree
12 with 584 nodes only very shortly before the publi
ation of Sarti's 600-nodalexample. Stagnaro's 
onstru
tion was therefore never published.Until this point, the following was known on µ(d):

d 5 6 7 8 9 10 11 12 d

µ(d)(µA1
(d)) ≤ 31 68 (65) 104 174 246 360 480 645 ≈ 4

9d3

µA1
(d) ≥ 31 65 93 168 216 345 425 600 ≈ 5

12d3
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Figure 4.4. The 600-nodal Sarti Dode
ti
.4.10. Surfa
es in P3 with Triple PointsWe already mentioned in se
tion 3.1.3 on page 32 that the maximum numberof ordinary triple points on a quinti
 in P3 was already shown to be 5 by Gallarati[Gal52b℄. But for higher degree not mu
h was known until 2000. In parti
ular, forthe next smallest degree, six, it was unknown if there existed a sexti
 with 11 triplepoints.Re
all that we denote by µ3(d) the maximum number of ordinary triple pointson a surfa
e of degree d in P3. µ3(6) ≤ 11 
an easily be 
omputed using Var
henko'sbound. The authors of [EPS03℄ also found another bound, the so-
alled polarbound whi
h is bad for high degree d, but for d = 6 it gives µ3(6) ≤ 10. Thispolar bound is based on the fa
t that the position of the triple points of a surfa
ein P3 
annot be too spe
ial. In fa
t, the authors of [EPS03℄ showed that if Fd isa surfa
e of degree d with many triple points and Vδ is another surfa
e of degree

δ then Vδ 
annot 
ontain more than 1
6δd(d − 1) of the triple points of Fd, 
ountedwith multipli
ities. As they were also able to show the existen
e of a sexti
 with

10 triple points, they 
ould 
on
lude that the maximum number of triple points onsu
h a surfa
e was known:
µ3(6) = 10.The authors were not able to 
lassify all sexti
s with 10 triple points; this 
lassi�-
ation was 
ompleted by one of them in [Ste03℄.For degree d ≥ 8, the best known upper bound for µ3(d) is Wahl's generaliza-tion [Wah94℄ of Miyaoka's bound (se
tion 3.10 on page 40) whi
h the authors of[EPS03℄ also 
omputed:

µ3(d) ≤ 2

27
d(d − 1)2, d ≥ 7.For d = 7, Var
henko's bound is still better and 
omputes to 17. The authors werenot able to rea
h this bound, but they gave a one-parameter family of septi
s with

16 triple points, see �g. 4.5 on the following page.In a re
ent arti
le [Sta04℄, Stagnaro used again a variant of B. Segre's se
ond
onstru
tion (se
tion 2.4) to get a surfa
e of degree 9 with 39 triple points (upperbound: 42). 4.11. Barth's Surfa
es with many CuspsAfter having studied surfa
es with many nodes in the early 1990's, Barth startedto look at surfa
es with many 
usps (i.e. A2-singularities) in the late 1990's. Hisaim was not only to �nd lower bounds for the maximum number of 
usps, but also
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Figure 4.5. A Septi
 with 16 ordinary triple points.to des
ribe the 
odes 
onne
ted to them: Similar to the 
ode over F2 asso
iated toan even set of nodes, one 
an 
onstru
t a 
ode over F3 to a three-divisible set of
usps.Barth showed in [Bar00b℄ that a quarti
 in P3 
annot 
ontain more than 8
usps and he also gave expli
it examples whi
h proved the existen
e . As alreadymentioned, this also follows in an abstra
t way from Yang's 
omputations, seese
tion 4.8 on page 53. Barth's 8-
uspidal quarti
s were 
onstru
ted as proje
tionsof 9-
uspidal sexti
 surfa
es in P4 from one of their nine 
usps. The one-parameterfamily Bar4(k), k 6= ±1, of quarti
s with 8 
usps is given by:(4.23) (1 + k)3x2

0x
2
1 + 2k(1 − k2)x0x1x2x3 − (1 − k)3x2

2x
2
3

+(1 − k2)(x0 + x1 + x2 + x3)
“

(1 − k)x2x3(x0 + x1) − (1 + k)x0x1(x2 + x3)
”One of these quarti
s is shown in �g. 4.6.

Figure 4.6. Barth's quarti
 with eight 
usps for k = 2.In [Bar00a℄, Barth 
onstru
ted another surfa
e with many 
usps: a quinti
whi
h is ni
ely 
onne
ted to the Clebs
h Diagonal Cubi
 (equation (1.5)). Similar tothis surfa
e, it is Σ5-symmetri
 and given by a hyperplane se
tion of a hypersurfa
ein P4:(4.24) Bar15 : 5s2s3 − 12s5 = 0, s1 = 0,where sk :=
∑4

i=0 xk
i . Bar15 has A2-singularities at the 15 points in the Σ5-orbitof (1 : 1 : −1 : −1 : 0) whi
h shows: µA2

(5) ≥ 15. But this surfa
e has many otherinteresting geometri
al properties. E.g., its interse
tion with the Clebs
h DiagonalSurfa
e Cle3 
onsists exa
tly of 15 lines joining the 15 singularities in pairs, see�g. 4.7 on the next page.



4.13. HYPERSURFACES WITH HIGH Aj-SINGULARITIES (j > d) 57
Figure 4.7. Barth's quinti
 with 15 
usps and the same surfa
etogether with the Clebs
h Diagonal Cubi
.For further work on 
uspidal surfa
es of low degree and their 
odes, we refer to[Bar98, Tan03, BR01, BR04℄ . For a short overview on the results on 
urves,see se
tion 2.5 on page 24.4.12. Pat
hworking Singular VarietiesA topi
 that we did not tou
h so far for d ≥ 5 is the general question whi
h
ombinations of possibly di�erent types of singularities 
an o

ur on a hypersurfa
eof degree d in Pn.One of the �rst results in this dire
tion is 
ontained in Greuel's, Lossen's andShustin's joint arti
le [GLS98℄. They prove the existen
e of an α > 0, s.t. aplane 
urve with pres
ribed singularities of topologi
al types S1, . . . , Sk exists if

µ(S1) + · · · + µ(Sk) ≤ αd2. The 
oe�
ient α whi
h o

urred in this su�
ient
riterion was later improved by one of the authors [Los99℄.Most known results on the existen
e of hypersurfa
es in higher dimensionswith possibly di�erent pres
ribed topologi
al types are mainly based on pat
h-working theorems by Shustin [Shu98, Shu00℄. Some works using these methodsare [Wes03, SW04℄. Noti
e that these results are the best known ones in thisgenerality, but when restri
ting to hypersurfa
es with only one parti
ular type ofsingularity then the other 
onstru
tions presented in this survey give more singu-larities. 4.13. Hypersurfa
es with high Aj-Singularities (j > d)Most 
onstru
tions for hypersurfa
es with many higher singularities only workfor degree d large enough. Most asymptoti
 behaviours 
onsidered in the previousse
tions were of the type: �x a type of singularity and ask how many of them 
ano

ur on hypersurfa
es of degree d for d → ∞. It is also natural to ask the otherquestion: Whi
h singularities 
an o

ur on a hypersurfa
e in Pn of a �xed degree
d? As already mentioned, this has been answered 
ompletely for d = 3 (se
tion 1.1)and d = 4 (se
tion 4.8). To our knowledge, not mu
h is known for degree d ≥ 5.In this se
tion we want to give those few 
onstru
tions known to us whi
h givesingularities f with high Milnor numbers µ(f), i.e., µ(f) > d. As we 
ould not �ndany referen
e in the literature to the 
orresponding upper bounds we also 
omputethem here.One Single Isolated Singularity. Consider the polynomials(4.25) fk,l(x1, . . . , xn) := (x2 − xk

1)l + · · · + (xn − xk
n−1)

l + s·xlk
n



58 4. RECENT RESULTS (1991 UNTIL NOW)
d 4 5 6 7 8 9 10 11 12

j·VarAj
(d), j ≥ 2d − 1 19 44 85 146 231 344 489 670 891Table 4.1. Var
henko's upper bound for the maximum numberof Aj-singularities on a surfa
e in P3 of degree d as a fun
tion of

j for �xed d, j ≥ 2d − 1. They are all of the form od−1

j , where
od = 1

3d(2d2 + 1) are the so-
alled o
tahedral numbers.of degree l·k with s ∈ C generi
. Then it is easy to show that the hypersurfa
e fk,2in Pn has an A2kn−1-singularity at the origin. This is a well-known tri
k variantsof whi
h also exist for Dj-singularities (see e.g., [Wes03, p. 350℄).We already remarked that a quarti
 in P3 with an A19-singularity exists, andthat this is the highest possible Aj-singularity a

ording to Var
henko's upperbound (see se
tion 4.8 on Yang's list). Var
henko's bound is also exa
t for d = 3:the highest Aj-singularity is an A5-singularity in this 
ase. So we may ask: IsVar
henko's bound exa
t for the maximum index j s.t. there exists an Aj -singularityon a surfa
e of �xed degree d?Globalizing the Equation. It is easy to globalize the lo
al tri
k from thepre
eding se
tion to to get surfa
es with few Aj-singularities (i.e., j > d) in P3. Of
ourse, there are natural generalizations to higher dimensions and several variantswhi
h produ
e other numbers and types of singularities:Let k, l ∈ N, k ≥ l. The surfa
es(4.26) gk,l :=
(
(yl − 1) − (xk − 1)

)2
+

(
z − (yl − 1)(⌊ k

l ⌋)
)2

+ z2kof degree d = 2k have k·l singularities of type A 2k2

l
−1
.Interpretation of Var
henko's Bound VarAj
(d) as O
tahedral Num-bers if j ≥ 2d − 1. In the 
ase j > d Var
henko's bound (se
tion 3.7) is usuallybetter than Miyaoka's (se
tion 3.10). For �xed d, these upper bounds 
annot bedes
ribed by a polynomial, but by a rational fun
tion. We 
ould not �nd a refer-en
e of Var
henko's bound for the number of Aj -singularities for �xed degree in theliterature. So, let us 
ompute it here using the 
on
rete expression (3.19) whi
h wegave on page 37. It turns out that equation (3.19) simpli�es drasti
ally if we redu
eto the 
ase j ≥ 2d − 1. Indeed, if we write d = k(j + 1) + l) as on page 37 then

k = 0 and d = l. In this way, (3.19) redu
es after some easy 
omputations to:(4.27) VarAj
(d) =

1

2j

(
(2− 4d2)C + (4d− 1)C2 −C3

)
+

2d

3j
(d2 − 1), if j ≥ 2d− 1,where C :=

⌊
2·d·j
j+1

⌋. But C =
⌊

2·d·j
j+1

⌋
=

⌊
2d − 2·d

j+1

⌋
= 2·d − 1 if j ≥ 2·d − 1. Theprevious formula thus 
ollapses to:(4.28) VarAj

(d) =
1

3j
·
(
(d − 1)·(2(d − 1)2 + 1)

)
, if j ≥ 2d − 1.The �rst values of this bound are listed in table 4.1. When entering the num-bers j·VarAj

(d) in the Sloane's on-line en
y
lopedia of integer sequen
es [Slo, id:A005900℄ we learn that these are the so-
alled o
tahedral numbers. These numbers

http://www.research.att.com/projects/OEIS?Anum=A005900


4.13. HYPERSURFACES WITH HIGH Aj-SINGULARITIES (j > d) 59are a three-dimensional variant of square numbers sqi := i2 (see �g. 4.8): just �llup the o
tahedron by layers of squares (see �g. 4.9). This 
omputes to:(4.29) od =

d∑

i=1

sqi +

d−1∑

i=1

sqi =
1

3
d(2d2 + 1).

sq1 = 1 sq2 = 22 sq3 = 32 sq4 = 42Figure 4.8. The square numbers sqi = i2.
o1 = 1 o2 = 1 + 4 + 1 = 6 o3 = 1 + 4 + 9 + 4 + 1 = 19Figure 4.9. The o
tahedral numbers od =

∑d
k=1 k2 +

∑d−1
k=1 k2.Do surfa
es of degree d ≥ 5 with an Aod−1

-singularity exist?







Figure on the pre
eding pages: A 99-nodal septi
, lo
ated within a four-parameterfamily of 63-nodal surfa
es using the geometry of prime �eld experiments. See[Lab03a℄ for more images and movies of algebrai
 surfa
es.



Part 2New Constru
tions and Algorithms





INTRODUCTION 65Introdu
tionWe give new results related to two types of 
onstru
tions: Chmutov's 
onstru
-tion of nodal surfa
es given by polynomials in separated variables (see se
tion 4.1 onpage 45) and dihedral-symmetri
 
onstru
tions based on Rohn's idea (see se
tion 1.3on page 16).On Variants of Chmutov's Constru
tions. Our �rst new result (
hap-ter 5 on page 67) is a variant of Chmutov's 
onstru
tion whi
h gives many Aj-singularities instead of nodes. Our proof of the existen
e of the hypersurfa
es withmany Aj-singularities is based on the theory of dessins d'enfants. In most 
ases,our 
onstru
tion leads to new lower bounds:
µAj

(d) '
3j + 2

6j(j + 1)
d3, j ≥ 2.Important ingredients of this 
onstru
tion are 
ertain line arrangements in theplane whi
h have many 
riti
al points with the same non-zero 
riti
al value. Usinga relation to the theory of two-
olorings of real line arrangements we are able toshow that these arrangements are asymptoti
ally the best possible ones (
hapter 6on page 79).Using Computers to Study Spe
ial Cases. For spe
ial 
ases of low degree,it is usually possible to improve general results su
h as those presented in the two
hapters mentioned in the previous se
tion. The most re
ent new lower boundsfor the maximum number of nodes on surfa
es of a given degree were produ
ed bystarting with some k-parameter family of su
h surfa
es and then using geometri
alarguments to determine the parameters su
h that a new re
ord was found.But guessing su
h geometri
al arguments requires a large amount of geometri
intuition. And it turned out that the 
ases of odd degree d = 7, 9, 11, . . . are quitedi�
ult to treat in that way. So, our idea was to �nd algorithms to lo
ate inter-esting examples within the families. We present two essentially di�erent methods:elimination and primary de
omposition in 
hara
teristi
 zero (
hapter 7), or exper-iments over prime �elds and then lifting to 
hara
teristi
 zero (
hapters 8 and 9).The latter allows us to 
onstru
t a surfa
e of degree 7 in P3 with 99 nodes (
hapter8) whi
h is the �rst 
ase of odd degree greater than �ve whi
h ex
eeds Chmutov'sgeneral lower bound:

99 ≤ µ(7) ≤ 104.We then des
ribe an algorithm whi
h 
an be performed automati
ally by a
omputer (
hapter 9). Our implementation as a Singular library 
alled sear
h-InFamilies.lib redu
es the 
onstru
tion of a 99-nodal septi
 to a 10-minute-long
omputer algebra 
omputation. Similarly, all re
ords for smaller degrees d ≤ 6 
anbe reprodu
ed. When applying the algorithm to the 
ase d = 9 we obtain a noni
with 226 nodes whi
h is also a new lower bound:
226 ≤ µ(9) ≤ 246.Our algorithm is very general so that it 
an 
ertainly be applied to many other
on
rete problems in algebrai
 geometry.



A quinti
 with 15 
usps whi
h shows the idea of how to 
onstru
t surfa
es withmany Aj-singularities using Dessins d'Enfants.



CHAPTER 5Dessins d'Enfants and Surfa
es with Many
Aj-SingularitiesThe best known lower bounds for surfa
es of large degree d with A1-singularitiesare given by Chmutov's 
onstru
tion (se
tion 4.1). For higher Aj -singularitiesthe best known 
onstru
tions are still given by a dire
t generalization of Rohn's
onstru
tion (se
tion 1.3), µAj

(d) ≥ 1
2d(d − 1)⌊ d

j+1⌋. For many degrees, one 
analso use Gallarati's already mentioned generalization of B. Segre's 
onstru
tion(se
tion 2.5) whi
h is usually better than Rohn's if it 
an be applied.For singularities di�erent from nodes, there exist only very few spe
ial 
on-stru
tions whi
h ex
eed these general ones. The best known lower bounds inparti
ular 
ases of low degree are given by Barth, see se
tion 4.11: µA2
(4) = 8,

15 ≤ µA2
(5) ≤ 20. In this 
hapter (see also [Lab05b℄) we des
ribe a variant ofChmutov's 
onstru
tion whi
h leads to the lower bound (
orollary 5.7 on page 73):(5.1) µAj

(d) '
3j + 2

6j(j + 1)
d3.To our knowledge, this gives asymptoti
ally the best known bounds for any j ≥ 2.The 
onstru
tion rea
hes more than ≈ 75% of the theoreti
al upper bound (seese
tion 3.10 on page 40) in all 
ases. For quinti
s in P3, we also get an examplewith 15 
usps, so the gap of 5 more possible 
usps remains.Table 5.1 on the following page gives an overview of our results for low j, seealso 
orollaries 5.7 and 5.8. We des
ribe a generalization of our 
onstru
tion tohigher dimensions in se
tion 5.6 on page 74. This leads to new lower bounds evenin the 
ase of nodal hypersurfa
es.5.1. Chmutov's IdeaWe start with some notation: A point z0 ∈ C is a 
riti
al point of multipli
ity

j ∈ N of a polynomial g ∈ C[z] in one variable if the �rst j derivatives of g vanish at
z0: g(1)(z0) = · · · = g(j)(z0) = 0. The number g(z0) is 
alled the 
riti
al value of z0.A 
riti
al point of multipli
ity j, j > 1, is 
alled a degenerate 
riti
al point. Re
allfrom se
tion 4.1 on page 45 that Chmutov used the following idea to 
onstru
tsurfa
es in P3 with many nodes:

• Let Pd(x, y) ∈ C[x, y] be a polynomial of degree d with few di�erent 
riti
alvalues, all of whi
h are non-degenerate. By a 
oordinate 
hange, we mayassume that the two 
riti
al values whi
h o

ur most often are 0 and −1.We assume that they o

ur ν(0) and ν(−1) times, and that ν(0) > ν(−1).
• Let Td(z) ∈ R[z] be the T
heby
hev polynomial of degree d with 
riti
alvalues −1 and +1, where −1 o

urs ⌊d

2⌋ times and +1 o

urs ⌊d−1
2 ⌋ times.67
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@

@j d 3 4 5 6 7 8 9 10 11 12 d

1 ��44 ��1616
��3131

��6565
��10493

��174168
��246216

��360345
��480425

��645600 ≈ ��4/95/12 · d3

2 ��33 ��88 ��2015
��3736

��6252
��9870

��144126
��202159

��275225
��363300 ≈ ��1/42/9 · d3

3 ��11 ��66 ��1310
��2615

��4431
��6964

��10272
��144114

��195140
��258198 ≈ ��8/4511/72 · d3

4 ��11 ��44 ��1110
��2015

��3521
��5432

��8054
��112100

��152110
��201132 ≈ ��5/367/60 · d3Table 5.1. Known upper and lower bounds for the maximumnumber µAj

(d) of singularities of type Aj , j = 1, 2, 3, 4, on a sur-fa
e of degree d in P3. For j ≥ 2 and d ≥ 5, the lower boundsare attained by our examples or by Gallarati's generalization ofB. Segre's idea (se
tion 2.5 on page 24).
• It is easy to see that the proje
tive surfa
e given by the a�ne equation(5.2) Pd(x, y) +

1

2
(Td(z) + 1) = 0has ν(0) · ⌊d

2⌋ + ν(−1) · ⌊d−1
2 ⌋ nodes.Chmutov uses for Pd(x, y) the folding polynomials FA2

d asso
iated to the root system
A2 de�ned in (4.2). In the 
ase of degree 5 the best polynomial for this purpose is aregular �vegon R5(x, y) ∈ R[x, y] with the 
riti
al value 1 at the origin and with the
riti
al value −1 at the other non-singular 
riti
al points. The 
onstru
tion abovethen gives 30 nodes, see �g. 5.1.

R5(x, y) T5(z) R5(x, y) + 1
2 (T5(z) + 1)Figure 5.1. A variant of Givental's and Chmutov's 
onstru
tion:A regular 5-gon R5(x, y), the T
heby
hev polynomial T5(z) and thesurfa
e R5(x, y) + 1

2 (T5(z) + 1) with 10 · 2 + 5 · 2 = 30 nodes.5.2. Adaption to Higher SingularitiesTo adapt Chmutov's 
onstru
tion (5.2) to higher singularities of type Aj , werepla
e the polynomials Td(z) by polynomials with degenerate 
riti
al points.For the 
onstru
tion of a quinti
 surfa
e with many 
usps, we thus take againthe regular 5-gon R5(x, y) ∈ R[x, y] together with a polynomial T 2
5 (z) ∈ R[z] ofdegree 5 with the maximum number of 
riti
al points of multipli
ity two. As thederivative of su
h a polynomial has degree 4, the maximum number of su
h 
riti
al
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R5(x, y) T 2

5 (z) R5(x, y) + 1
2 (T 2

5 (z) + 1)Figure 5.2. The 
onstru
tion of a quinti
 with 15 
usps.points is 4
2 = 2, see �g. 5.2. The 
riti
al values of these two 
riti
al points have to bedi�erent be
ause a horizontal line through both 
riti
al points would interse
t the
urve in six points 
ounted with multipli
ities. Similar to the situation for nodes in(5.2) the surfa
e R5(x, y) + 1

2 (T 2
5 (z) + 1) has 10·1 + 5·1 = 15 singularities of type

A2. We take surfa
es in separated variables de�ned by polynomials of the form:(5.3) Chm(Gj
d) := FA2

d + Gj
d,where FA2

d (x, y) ∈ R[x, y] is the folding polynomial de�ned in (4.2) and where
Gj

d(z) ∈ C[z] is a polynomial of degree d with many 
riti
al points of multipli
ity jwith 
riti
al values −1 and +1. E.g., for j = 1, the ordinary T
heby
hev polyno-mials G1
d(z) := Td(z) yield Chmutov's surfa
es with many nodes. In the followingse
tions, we dis
uss two generalizations of the ordinary T
heby
hev polynomials topolynomials with 
riti
al points of higher multipli
ity whi
h give surfa
es of degree

d with many Aj-singularities, j < d.5.3. j-Belyi Polynomials via Dessins d'EnfantsThe existen
e of polynomials in one variable with only two di�erent 
riti
alvalues with pres
ribed multipli
ities of the 
riti
al points 
an be established usingideas of Hurwitz [Hur91℄ based on Riemann's Existen
e Theorem. The interest inthis subje
t was renewed by Grothendie
k's Esquisse d'un programme (see [SL97a,SL97b℄). Nowadays, it is 
ommonly known under the name of Dessins d'Enfants.We will use the following proposition / de�nition whi
h is basi
ally taken from[AZ98℄:Proposition/Definition 5.1.(1) A tree (i.e. a graph without 
y
les) with a pres
ribed 
y
li
 order of theedges adja
ent to ea
h vertex is 
alled a plane tree. A plane tree has anatural bi
oloring of the verti
es (bla
k/white). If we �x the 
olor of onevertex, then this bi
oloring is unique.(2) A polynomial in one variable with not more than two di�erent 
riti
alvalues is 
alled a Belyi polynomial.(3) For a given Belyi polynomial p : C → C with 
riti
al values c1 and c2, wede�ne the plane tree PT (p) asso
iated to p to be the inverse image
p−1([c1, c2]) of the interval [c1, c2], where p−1(c1) are the bla
k verti
es,and p−1(c2) are the white verti
es of the tree (see �g. 5.3 on the followingpage).
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Figure 5.3. The ordinary T
heby
hev polynomial T5 with two
riti
al points with 
riti
al value −1 and two with 
riti
al value
+1. The right pi
ture shows its plane tree PT (T5). A vertex withtwo adja
ent edges 
orresponds to a 
riti
al point with multipli
ity
1, a vertex with one adja
ent edge 
orresponds to a non-
riti
alpoint.(4) For any plane tree, there exists a Belyi polynomial whose 
riti
al pointshave the multipli
ities given by the number of edges adja
ent to the verti
esminus one and vi
e ver
a.We will need the following two trivial bounds 
on
erning 
riti
al points:Lemma 5.2. Let d, j ∈ N. Let g ∈ C[z] be a polynomial of degree d in onevariable with only isolated 
riti
al points. Then:(1) The total number of di�erent 
riti
al points of g of multipli
ity j does notex
eed ⌊d−1

j ⌋.(2) The number of di�erent 
riti
al points of g of multipli
ity j with the same
riti
al value does not ex
eed ⌊ d
j+1⌋. 2We give a spe
ial name to polynomials rea
hing the �rst of these bounds:Definition 5.1. Let d, j ∈ N and let p be a Belyi polynomial of degree d. We
all p a j-Belyi polynomial if p has the maximum possible number ⌊d−1

j ⌋ of
riti
al points of multipli
ity j.Example 5.1. The ordinary T
heby
hev polynomials T 1
d (z) := Td(z) are 1-Belyi polynomials. T 2

5 (z) in �g. 5.2 on the previous page is a 2-Belyi Polynomial.
2 A spe
ial type of j-Belyi polynomials are those of degree j + 1. We will joinseveral plane trees 
orresponding to su
h j-Belyi polynomials of degree j+1 to formlarger plane trees in the following se
tions:Definition 5.2. We 
all the plane tree 
orresponding to a j-Belyi polynomialof degree j + 1 a j-star. If the 
enter of this tree is a bla
k (resp. white) vertex we
all it a •- (resp. ◦-) 
entered j-star (see �g. 5.4 on the fa
ing page).5.4. The Polynomials T j

d (z)A natural generalization of the ordinary T
heby
hev polynomials to polynomi-als Gj
d(z) with degenerate 
riti
al points that 
an be used in the 
onstru
tion ofequation (5.3) on page 69 
omes from the following intuitive idea: Take polynomi-als whi
h look similar to the ordinary T
heby
hev polynomials (�g. 5.3), but whi
hhave higher vanishing derivatives su
h that they are j-Belyi polynomials.



5.4. THE POLYNOMIALS T j

d
(z) 71

T j
j+1(z) = zj+1 − 1 for j = 6. 1

2

j + 1

3 ·
·
·Figure 5.4. The polynomial T j

j+1(z) with exa
tly one 
riti
alpoint z0 = 0 of multipli
ity j and 
riti
al value −1 together withthe 
orresponding •-
entered j-star.Example 5.2. A 3-Belyi polynomial of degree 13 has ⌊
13−1

3

⌋
= 4 
riti
al pointsof multipli
ity 3. The polynomial T 3

13 has two 
riti
al points with 
riti
al value
−1 and two with 
riti
al value +1. The plane tree showing the existen
e of su
h apolynomial 
onsists of four 
onne
ted 3-stars. To show the similarity to the ordinaryT
heby
hev polynomials we draw them in �g. 5.5 as four bouquets of 1-stars atta
hedto the plane tree in �g. 5.3 on the pre
eding page. A straightforward Singular[GPS01℄ s
ript to 
ompute the equation of T 3

13(z) 
an be found on the website[Lab03a℄. 2

j−1 verti
es︷ ︸︸ ︷

︸ ︷︷ ︸
k bouquets1

2 3

4 13

5 6

7

8 9

10

11 12Figure 5.5. The bi
olored plane tree PT (T j
d ) for the polynomial

T j
d (z) for j = 3, d = 13, k := d−1

j = 4. It 
onsists of k 
onne
ted
j-stars. Here, we line them up to show the similarity to the or-dinary T
heby
hev polynomials in �g. 5.3 on the fa
ing page. See[Lab03a℄ for a Singular [GPS01℄ s
ript to 
ompute the equationof T 3

13(z).Theorem/Definition 5.3. Let d, j ∈ N with d > j. There exists a polynomial
T

j
d(z) of degree d with ⌈ 1

2⌊d−1
j ⌋⌉ 
riti
al points of multipli
ity j with 
riti
al value

−1 and ⌊ 1
2⌊d−1

j ⌋⌋ su
h 
riti
al points with 
riti
al value +1.Proof. The 
orresponding plane tree PT (T j
d ) 
an be de�ned as follows (
om-pare �g. 5.5). For d = k · (j + 1), k ∈ N, we take k 
onne
ted j-stars. Fixingthe 
enter of the �rst j-star to be white, the plane tree has a unique bi
oloring. If

d = l + k · (j + 1) for some 1 ≤ l ≤ j, we atta
h another l-star to get a polynomialof degree d. �Although there is an expli
it re
ursive 
onstru
tion of ordinary T
heby
hevpolynomials and their generalizations to higher dimensions (the folding polynomials,see [Wit88℄), we do not know a similar expli
it 
onstru
tion of the polynomials
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T j

d (z) for j ≥ 2. To our knowledge, they 
an only be 
omputed for low degree duntil now, e.g. using Groebner Basis. When plugged into the 
onstru
tion (5.3) onpage 69 the existen
e of the polynomials T j
d immediately implies:Corollary 5.4. Let d, j ∈ N with d > j. There exist surfa
esChm(T j

d ) := FA2

d +
1

2
(T j

d + 1)of degree d with the following number of singularities of type Aj :
1
2d(d − 1)·⌈ 1

2⌊d−1
j ⌋⌉ + 1

3d(d − 3)·⌊ 1
2⌊d−1

j ⌋⌋, if d ≡ 0 mod 3,

1
2d(d − 1)·⌈ 1

2⌊d−1
j ⌋⌉ + 1

3 (d(d − 3) + 2)·⌊ 1
2⌊d−1

j ⌋⌋, otherwise. 25.5. The Polynomials M j
d(z)The j-Belyi polynomials T j

d (z) des
ribed in the previous se
tion rea
h the �rstbound of lemma 5.2 on page 70. The j-Belyi polynomials M j
d(z) whose existen
ewill be shown in this se
tion also a
hieve the se
ond bound of this lemma. We startwith two examples:Example 5.3. The 2-Belyi polynomial T 2

9 (z) is the example of the smallestdegree from the previous se
tion that does not rea
h the se
ond bound of lemma 5.2.The plane tree PT (M2
9 (z)) in �g. 5.6 shows the existen
e of a 2-Belyi polynomialof degree 9 that a
hieves this bound.As in the 
ase of the polynomials T j

d (z), it is possible to 
ompute the polynomials
M j

d(z) expli
itly for low j and d. For our 
ase j = 2, d = 9 we denote by u theunique 
riti
al point with 
riti
al value +1 and by b0, b1, b2 the three 
riti
al pointswith 
riti
al value −1. When requiring b2 = 0 (i.e., M2
9 (0) = −1), M2

9 (z) has thederivative
∂M2

9

∂z
(z) = (z − b0)

2 · (z − b1)
2 · z2 · (z − u)2.Using Singular [GPS01℄, we �nd: u9 = 18 and b0 and b1 are the two distin
troots of z2 − 3uz + 3u2 = 0. Noti
e that b0, b1 /∈ R even if we take u ∈ R. 2

(a) PT (M2
3 ) (b) PT (M2

9 ) (
) PT (M2
15)Figure 5.6. To obtain PT (M2

9 ) from the 2-star PT (M2
3 ) =

PT (T 2
3 ), we atta
h two •-
entered 2-stars to one of the ◦-verti
es(marked by the grey ba
kground). The 
orresponding polynomial

M2
9 (z) has thus 3 
riti
al points of multipli
ity 2 with 
riti
al value

−1 (the 3 •-
entered 2-stars) and 1 su
h point with 
riti
al value
+1 (the only ◦-
entered 2-star). M2

15 has �ve and two, respe
tively.



5.5. THE POLYNOMIALS Mj

d
(z) 73Example 5.4. If d 6= k ·(j +1) for some k ∈ N, the 
onstru
tion of a plane tree
orresponding to a polynomial rea
hing both bounds of lemma 5.2 is a little moredeli
ate than in the previous example. The 
ases PT (M2

11) and PT (M2
12) in �g. 5.7illustrate this. 2

(a) PT (M2
11) (b) PT (M2

12)Figure 5.7. M2
11 and M2

12 have the same number of 
riti
al pointsof multipli
ity j. M2
12 has �ve ones with 
riti
al value −1 and onlyone 
riti
al point with 
riti
al value +1. M2

11 has three 
riti
alpoints with 
riti
al value −1 and two with 
riti
al value +1.Theorem/Definition 5.5. Let d, j ∈ N with d > j. There exists a polynomial
M

j
d(z) of degree d with ⌊

d
j+1

⌋ 
riti
al points of multipli
ity j with 
riti
al value
−1 and (⌊

d−1
j

⌋
−

⌊
d

j+1

⌋) su
h 
riti
al points with 
riti
al value +1.Proof. The existen
e of a 
orresponding plane tree PT (M j
d) 
an be shown asfollows (
ompare �g. 5.6 on the pre
eding page). For d = j + 1 we de�ne PT (M j

d)as a •-
entered j-star. For d = (j + 1) + k · j·(j + 1), k ∈ N, we atta
h su

essivelysets of j •-
entered j-stars as illustrated in �gure 5.6. If d 6= (j + 1) + k · j·(j + 1)for some k ∈ N the existen
e of plane trees PT (M j
d) 
an be shown similarly (see�g. 5.7). �The existen
e of the polynomials M j

d(z) has two immediate 
onsequen
es:Corollary 5.6. The bounds in lemma 5.2 on page 70 are sharp. 2It is 
lear that the polynomials M j
d 
annot have only real 
oe�
ients and onlyreal 
riti
al points for d large enough. So, the same holds for the singularities ofthe surfa
es of the following 
orollary:Corollary 5.7. Let d, j ∈ N with d > j. There exist surfa
esChm(M j

d) := FA2

d + M j
dof degree d with the following number of singularities of type Aj :

1
2d(d − 1)·

⌊
d

j+1

⌋
+ 1

3d(d − 3)·
(⌊

d−1
j

⌋
−

⌊
d

j+1

⌋)
, if d ≡ 0 mod 3,

1
2d(d − 1)·

⌊
d

j+1

⌋
+ 1

3 (d(d − 3) + 2)·
(⌊

d−1
j

⌋
−

⌊
d

j+1

⌋)
, otherwise. 2



74 5. DESSINS D'ENFANTS AND SURFACES WITH MANY Aj-SINGULARITIESTo get an idea of the quality of our best lower bounds given by our examplesChm(M j
d) from 
orollary 5.7 on the pre
eding page we 
ompare them with thebest known upper bounds: Var
henko's spe
tral bound (se
tion 3.7 on page 35)and Miyaoka's bound (se
tion 3.10 on page 40). It is well-known that the latter isbetter for large d. Together with the previous 
orollary we get:Corollary 5.8. Let j ∈ N. For large degree d, the quotient of the num-ber of Aj-singularities on our surfa
es Chm(M j

d) and the best known upper boundMiyAj
(d) is:

µAj
(Chm(M j

d))MiyAj
(d)

≈ (j + 2)(3j + 2)

4(j + 1)2
.This quotient is greater than 3

4 for all j ≥ 1, the limit for j → ∞ is also 3
4 . 25.6. Generalization to Higher DimensionsIt is possible to generalize the 
onstru
tion of surfa
es with manyAj -singularitiesdes
ribed in the previous se
tions to Pn, n ≥ 4. It turns out that for n ≥ 5, thefolding polynomials FA2

d (x, y) are no longer the best 
hoi
e: Even for nodal hyper-surfa
es, the folding polynomials FB2

d (x, y) lead to better lower bounds.5.6.1. Nodal Hypersurfa
es in Pn, n ≥ 4. In se
tion 4.1 on page 45 weexplained how Chmutov idea to use the folding polynomials FA2

d (x, y) asso
iatedto the root system A2 
an be generalized to obtain nodal hypersurfa
es in higherdimensions. We 
an improve the asymptoti
 behaviour of the lower bound slightlyby using a folding polynomial asso
iated to another root system. Su
h polynomialswere des
ribed in [Wit88℄, and their 
riti
al points were studied in [Bre05℄ anal-ogous to the 
ase of A2 treated by Chmutov in [Chm92℄ (see also se
tion 4.1). Itturns out that the folding polynomials FB2

d (x, y) asso
iated to the root system B2are best suited for our purposes. They 
an be de�ned re
ursively as follows:
FB2

0 := 1, FB2

1 :=
1

4
y, FB2

2 :=
1

4
y2 − 1

2
(x2 − 2y − 4) − 1,

FB2

3 :=
1

4
y3 − 3

4
y(x2 − 2y − 4) − 3

4
y,(5.4) FB2

d := y
(
FB2

d−1 + FB2

d−3

)
−

(
2 + (x2 − 2y − 4)

)
FB2

d−2 − FB2

d−4.These polynomials have exa
tly three di�erent 
riti
al values: −1, 0, +1. Thenumbers of 
riti
al points of FB2

d are: (
d
2

) with 
riti
al value 0, ⌊ (d−1)
2 ⌋⌊d

2⌋ with
riti
al value −1. The use of these polynomials improves the asymptoti
 behaviour(for d large) of the best known lower bound for the maximum number of nodes onlyslightly. This is given by Chmutov's surfa
es TChmn
d whi
h are de�ned as a sumof T
heby
hev polynomials (see se
tion 3.8 on page 38). In fa
t, the 
oe�
ient ofthe highest order term of the polynomial des
ribing its number of nodes does not
hange (see table 5.2 on the next page). Nevertheless, we want to mention:Proposition 5.9. Let n ≥ 2, d ≥ 3. Then: µ(Chmn(FB2

d )) > µ(TChmn
d ).It is not true that the folding polynomials FA2

d and FB2

d are the best possible
hoi
es in all 
ases. Indeed, for d = 5, a regular �ve-gon leads to more nodes. For
d = 3, 4 there are better 
onstru
tions for nodal hypersurfa
es in Pn known. Infa
t, Kalker (se
tion 3.11) already noti
ed that Var
henko's upper bound is exa
t
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n 3 4 5 6 7 8 9 10

1
dn ·µ(Chmn(FA2

d )) ≈ 5
12

7
18

7
24

19
72

35
144

49
216

79
432

25
144

1
dn ·µ(Chmn(FB2

d )) ≈ 1
dn ·µ(TChmn

d ) ≈ 3
23

3
23

5
24

5
24

35
27

35
27

63
28

63
28Table 5.2. The asymptoti
 behaviour of the number of nodeson variants of Chmutov's hypersurfa
es in Pn. As Chmutov al-ready realized in [Chm92℄, the Chmn(FA2

d ) are only better for
n = 3, 4. For n ≥ 5, the best lower bounds are given by our variantChmn(FB2

d ) whi
h improves Chmutov's oldest examples TChmn
dslightly.for d = 3. Goryunov redis
overed the same 
ubi
s by another method and alsofound quarti
s with many nodes in Pn (see se
tion 4.4).5.6.2. Hypersurfa
es in Pn with Aj-Singularities, j ≥ 2, n ≥ 4. Similarto the 
ase of surfa
es whi
h we dis
ussed in the pre
eding se
tions, we 
an adaptthe equations for the nodal hypersurfa
es to get hypersurfa
es Chmj,n(FB2

d ) (orChmj,n(FA2

d ), TChmj,n
d ) with many Aj-singularities:(5.5) Chmj,n(FB2

d ) :

⌊n−3

2
⌋∑

i=0

FB2

d (x2i, x2i+1) =

{
Td(xn−2) + M j

d(xn−1), n even
− 1

2 (M j
d(xn−1) + 1), n odd.This leads to the asymptoti
 behaviour given in table 5.3.

n 3 4 5 6 7 8

1
dn ·µn

A2
(d) ' 2

9
13
72

1
6

13
96

55
384

15
128

1
dn ·µn

A3
(d) ' 11

72
1
8

11
96

3
32

25
256

125
1536

1
dn ·µn

A4
(d) ' 7

60
23
240

7
80

23
320

19
256

1
16

1
dn ·µ(Chmj,n(FA2

d )) ≈ 3j+2
6j(j+1)

5j+3
12j(j+1)

7j+3
18j(j+1)

7j+4
24j(j+1)

19j+16
72j(j+1)

35j+19
144j(j+1)

1
dn ·µ(Chmj,n(FB2

d )) ≈ 2j+1
4j(j+1)

3j+2
8j(j+1)

3j+2
8j(j+1)

5j+3
16j(j+1)

20j+15
64j(j+1)

35j+20
128j(j+1)Table 5.3. The asymptoti
 behaviour of the number of Aj-singularities on a hypersurfa
e of degree d in Pn. Chmj,n(FB2

d )is better than Chmj,n(FA2

d ) for n ≥ 6.Noti
e that we usually get fewer singularities if we add a sign (−1)i in the sumin 
ontrast to equation (4.7) where the alternating sign is often better be
ause thefolding polynomial FA2

d has other 
riti
al values than FB2

d .Of 
ourse, for small d, n, j, it is often easy to write down better lower bounds.E.g., if n is even and d is small, it is often better to repla
e Td(xn−2)+M j
d(xn−1) bya plane 
urve with the maximum known number of 
usps. For some spe
i�
 valuesof d, j ≥ 2, n ≥ 4 there are even better lower bounds known. E.g., we already



76 5. DESSINS D'ENFANTS AND SURFACES WITH MANY Aj-SINGULARITIESmentioned in se
tion 1.5.3 that Lefs
hetz 
onstru
ted a 
ubi
 hypersurfa
e in P4with 5 
usps whi
h is the maximum possible number.For n = 2, our 
onstru
tion presented in subse
tion 5.6.2 on the previous pageonly leads to plane 
urves of degree d with ≈ 1
4 ·d2 
usps whereas the generalizationof B. Segre's 
onstru
tion (equation (2.12) gives ≈ 9

32 ·d2 su
h singularities whenstarting with a smooth 
oni
.





Breske's 216-nodal real variant of Chmutov's noni
.



CHAPTER 6Real Line Arrangements and Surfa
es with ManyReal NodesWe make a short ex
ursus to the world of real algebrai
 geometry (see also[BLvS05℄). More pre
isely, we 
onsider the relationship between the maximumpossible number µA1
(d) of nodes on a surfa
e of degree d and the maximum possiblenumber µR

A1
(d) of real nodes on a real surfa
e in P3(R). Obviously, µR

A1
(d) ≤

µA1
(d), but do we even have µR

A1
(d) = µA1

(d)? In other words: Can the maximumnumber of nodes be a
hieved with real surfa
es with real singularities?The previous question arises naturally be
ause all results in low degree d ≤ 12suggest that it 
ould be true (see 
hapter 4 on page 45 and table 6.1). In 
ontrastto this, until very re
ently, the best known asymptoti
 lower bound, µA1
(d) ' 5

12d3,was only rea
hed by Chmutov's 
onstru
tion (se
tion 4.1 on page 45) whi
h yieldssingularities with non-real 
oordinates. But during the writing of Breske's diplomathesis [Bre05℄ under the dire
tion of van Straten it turned out that the foldingpolynomials used by Chmutov 
an be adapted to have real 
riti
al points. Of
ourse, these give rise to variants of Chmutov's surfa
es with only real nodes. Inthis 
hapter, we brie�y explain how this 
an be done. See table 6.1 on the followingpage for the lower bounds for µA1
(d) resulting from this. In the real 
ase we 
andistinguish between two types of A1-singularities, 
oni
al nodes (x2 + y2 − z2 = 0)and solitary points (x2 + y2 + z2 = 0): Breske's 
onstru
tion produ
es only 
oni
alnodes.Noti
e that in general there are no better real upper bounds for µR

A1
(d) knownthan the well-known 
omplex ones of Miyaoka (se
tion 3.10) and Var
henko (se
tion3.7). But for solitary points there exist better bounds via the relation to the zerothBetti number (see e.g., [Kha96℄). E.g., Rohn showed in 1913 that a real quarti
surfa
e in P3(R) 
annot have more than 10 solitary points although it 
an have 16
oni
al nodes. We show a real upper bound of ≈ 5

6d2 for the maximum number of
riti
al points on two levels of real simple line arrangements 
onsisting of d lines. In[Chm95℄, Chmutov 
onje
tured this to be the maximum number for all 
omplexplane 
urves of degree d. He also noti
ed [Chm92℄ that su
h a bound dire
tlyimplies an upper bound for the number of real nodes of 
ertain surfa
es. Our upperbound shows that Breske's folding polynomials are asymptoti
ally the best possiblereal line arrangements for this purpose.6.1. Variants of Chmutov's Surfa
es with Many Real NodesIn this se
tion, we brie�y des
ribe how Breske adapted Chmutov's 
onstru
tionto get surfa
es with many real nodes. Re
all that the FA2

d (x, y) have 
riti
al pointswith only three di�erent 
riti
al values: 0, −1, and 8 (see se
tion 4.1 on page 45).Thus, the surfa
e ChmA2

d (x, y, z) is singular exa
tly at those points at whi
h the79



80 6. REAL LINE ARRANGEMENTS AND SURFACES WITH MANY REAL NODES
d 1 2 3 4 5 6 7 8 9 10 11 12 13 d

µR

A1
(d) ≤ 0 1 4 16 31 65 104 174 246 360 480 645 832 4

9d(d − 1)2

µR

A1
(d) ≥ 0 1 4 16 31 65 99 168 216 345 425 600 732 ≈ 5

12
d3Table 6.1. Ex
ept for d = 9, the 
urrently known bounds for themaximum number µA1

(d) (resp. µR

A1
(d)) of nodes on a surfa
e ofdegree d in P3(C) (resp. P3(R)) are equal. The bold numbers indi-
ate in whi
h 
ases Breske's variants of Chmutov's surfa
es improvethe previously known lower bound for µR

A1
(d).
riti
al values of FA2

d (x, y) and 1
2 (Td(z) + 1) sum up to zero (i.e., either both are 0or the �rst is −1 and the se
ond is +1).Noti
e that the plane 
urve de�ned by FA2

d (x, y) 
onsists in fa
t of d lines. Butthese are not real lines and the 
riti
al points of this folding polynomial also havenon-real 
oordinates. It is natural to ask whether there is a real line arrangementwhi
h leads to the same number of 
riti
al points. In her Diploma thesis, Breske
omputed the 
riti
al points of the other folding polynomials. Among these, thereare the following examples whi
h are the real line arrangements we have been lookingfor (see [Bre05, p. 87�89℄):We de�ne the real folding polynomial FA2

R,d(x, y) ∈ R[x, y] asso
iated to the rootsystem A2 as FA2

R,d(x, y) := FA2

d (x + iy, x − iy), where i is the imaginary number.It is easy to see that the FA2

R,d(x, y) have indeed real 
oe�
ients. The numbers of
riti
al points are the same as those of FA2

d (x, y); but now they have real 
oordinatesas the following lemma shows:Lemma 6.1 (see [Bre05℄). The real folding polynomial FA2

R,d(x, y) asso
iated tothe root system A2 has (
d
2

) real 
riti
al points with 
riti
al value 0 and
1

3
d2 − d, if d ≡ 0 mod 3,

1

3
d2 − d +

2

3
, otherwise(6.1)real 
riti
al points with 
riti
al value −1. The other 
riti
al points also have real
oordinates and have 
riti
al value 8.Proof. We pro
eed similar to the 
ase dis
ussed by Chmutov, see [Bre05, p.87�95℄ for details. To 
al
ulate the 
riti
al points of the real folding polynomial

FA2

R,d, we use the map h1 : R2 → R2, de�ned by
(u, v) 7→

(
cos(2π(u+v))+cos(2πu)+cos(2πv), sin(2π(u+v))−sin(2πu)−sin(2πv)

)
.This is in fa
t just the real and imaginary part of the �rst 
omponent of the gener-alized 
osine h 
onsidered by Withers [Wit88℄ and Chmutov [Chm92℄. It is easyto see that h1 is a 
oordinate 
hange if u − v > 0, u + 2v > 0, and 2u + v < 1. Ittransforms the polynomial FA2

R,d into the fun
tion GA2

d : R2 → R2, de�ned by
GA2

d (u, v) := FA2

R,d(h
1(u, v)) = 2 cos(2πdu) + 2 cos(2πdv) + 2 cos(2πd(u + v)) + 2.The 
al
ulation of the 
riti
al points of GA2

d is exa
tly the same as the one performedin [Chm92℄. As the fun
tion GA2

d has (d − 1)2 distin
t real 
riti
al points in theregion de�ned by u− v > 0, u + 2v > 0, and 2u + v < 1, the images of these pointsunder the map h1 are all the 
riti
al points of the real folding polynomial FA2

R,d of



6.2. ON TWO-COLORINGS OF REAL SIMPLE LINE ARRANGEMENTS 81degree d. In 
ontrast to Chmutov, we here get real 
riti
al points be
ause h1 is amap from R2 into itself. �None of the other root systems yield more 
riti
al points on two levels. Butas mentioned in se
tion 5.6 on page 74, the real folding polynomials asso
iated tothe root system B2 give hypersurfa
es in Pn, n ≥ 5, whi
h improve the previouslyknown lower bounds for the maximum number of nodes in higher dimensions slightly([Bre05℄ gives a detailed dis
ussion of all these folding polynomials and their 
riti
alpoints).
Figure 6.1. For degree d = 9 we show the T
heby
hev polynomial
T9(z), the real folding polynomial FA2

R,9(x, y) asso
iated to the rootsystem A2, and the surfa
e ChmA2

R,9(x, y, z). The bounded regionsin whi
h FA2

R,9(x, y) takes negative values are marked in bla
k.The lemma immediately gives the following variant of Chmutov's surfa
es:Theorem 6.2 (see [Bre05℄). Let d ∈ N. The real proje
tive surfa
e of degree
d de�ned by(6.2) ChmA2

R,d(x, y, z) := FA2

R,d(x, y) +
1

2
(Td(z) + 1) ∈ R[x, y, z]has the following number of real nodes:(6.3) 1

12

(
5d3 − 13d2 + 12d

)
, if d ≡ 0 mod 6,

1
12

(
5d3 − 13d2 + 16d − 8

)
, if d ≡ 2, 4 mod 6,

1
12

(
5d3 − 14d2 + 13d − 4

)
, if d ≡ 1, 5 mod 6,

1
12

(
5d3 − 14d2 + 9d

)
, if d ≡ 3 mod 6.These numbers are the same as the numbers of 
omplex nodes of Chmutov'ssurfa
es ChmA2

d (x, y, z). To our knowledge, the result gives new lower bounds forthe maximum number µR

A1
(d) of real singularities on a surfa
e of degree d in P3(R)for d = 9, 11 and d ≥ 13, see table 6.1 on the pre
eding page. Noti
e that all bestknown lower bounds for µR

A1
(d) are attained by surfa
es with only 
oni
al nodeswhi
h is not astonishing in view of the upper bounds for solitary points mentionedin the introdu
tion.6.2. On Two-Colorings of Real Simple Line ArrangementsThe real folding polynomials FA2

R,d(x, y) used in the previous se
tion are in fa
treal simple (straight) line arrangements in R2, i.e., lines no three of whi
h meet ina point. Su
h arrangements 
an be 2-
olored in a natural way (see �g. 6.1): We



82 6. REAL LINE ARRANGEMENTS AND SURFACES WITH MANY REAL NODESlabel in bla
k those 
onne
ted 
omponents (
ells) of R2 \ {FA2

R,d(x, y) = 0} in whi
h
FA2

R,d(x, y) takes negative values, the others in white. The bounded bla
k regions in�g. 6.1 
ontain exa
tly one 
riti
al point with 
riti
al value −1 ea
h.Harborth has shown in [Har81℄ that the maximum number Mb(d) of bla
k 
ellsin su
h real simple line arrangements of d lines satis�es:(6.4) Mb(d) ≤
{

1
3d2 + 1

3d, d odd,
1
3d2 + 1

6d, d even.

d of these 
ells are unbounded. This is a purely 
ombinatorial result whi
h isstrongly related to the problem of determining the maximum number of trianglesin su
h arrangements whi
h has a long and ri
h history (see [GO04℄). Noti
ethat this bound is better than the one obtained by Kharlamov using Hodge theory[Kha05℄. It is known that the bound (6.4) is exa
t for in�nitely many values of d.The real folding polynomials FA2

R,d(x, y) almost a
hieve this bound. Moreover, thesearrangements have the very spe
ial property that all 
riti
al points with a negative(resp. positive) 
riti
al value have the same 
riti
al value −1 (resp. +8).To translate the upper bound on the number of bla
k 
ells into an upper boundon 
riti
al points we use the following lemma:Lemma 6.3 (see Lemme 10, 11 in [OR03℄). Let f be a real simple line arrange-ment 
onsisting of d ≥ 3 lines. f has exa
tly (
d−1
2

) bounded open 
ells ea
h of whi
h
ontains exa
tly one 
riti
al point. All the 
riti
al points of f are non-degenerate.It is easy to prove the lemma, e.g. by 
ounting the number of bounded 
ellsand by observing that ea
h su
h 
ell 
ontains at least one 
riti
al point. Comparingthis with the number (d− 1)2 −
(
d
2

)
=

(
d−1
2

) of all non-zero 
riti
al points gives theresult. Now we 
an show that our real line arrangements are asymptoti
ally thebest possible ones for 
onstru
ting surfa
es with many singularities:Theorem 6.4. The maximum number of 
riti
al points with the same non-zero
riti
al value 0 6= v ∈ R of a real simple line arrangement is bounded by Mb(d)− d,where d is the number of lines. In parti
ular, the maximum number of 
riti
alpoints on two levels of su
h an arrangement does not ex
eed (
d
2

)
+Mb(d)−d ≈ 5

6d2.Proof. In view of the upper bound (6.4) for the maximum number Mb(d) ofbla
k 
ells of a real simple line arrangement we only have to verify that any bounded
ell 
ontains only one 
riti
al point. But this follows from the pre
eding lemma. �Chmutov showed a mu
h more general result ([Chm84℄, see [Chm95℄ for the
ase of non-degenerate 
riti
al points): For a plane 
urve of degree d the maximumnumber of 
riti
al points on two levels does not ex
eed ≈ 7
8d2. In [Chm95℄, he
onje
tured ≈ 5

6d2 to be the a
tual maximum whi
h is attained by the 
omplexline arrangements FA2

d (x, y) he used for his 
onstru
tion (and also by the real linearrangements FA2

R,d(x, y)). Thus, our theorem 6.4 is the veri�
ation of Chmutov's
onje
ture in the parti
ular 
ase of real simple line arrangements. As Chmutovremarked in [Chm92℄, su
h an upper bound immediately implies an upper boundon the maximum number of nodes on a surfa
e in separated variables:Corollary 6.5. A surfa
e of the form p(x, y) + q(z) = 0 
annot have morethan ≈ 1
2d2· 12d + 1

3d2· 12d = 5
12d3 nodes if p(x, y) is a real simple line arrangement.This number is attained by the surfa
es ChmA2

R,d(x, y, z) de�ned in theorem 6.2.



6.3. CONCLUDING REMARKS 83Comparing this number with the upper bound ≈ 5
12d3 on the zeroth Bettinumber (see e.g., [Kha96, p. 533℄) one is tempted to ask if it is possible to deformour singular surfa
es to get examples with many real 
onne
ted 
omponents. Butour surfa
es ChmA2

R,d(x, y, z) only 
ontain A−
1 singularities whi
h lo
ally look likea 
one (x2 + y2 − z2 = 0). When removing the singularities from the zero-set ofthe surfa
e every 
onne
ted 
omponent 
ontains at least three of the singularities.Thus, the zeroth Betti number of a small deformation of our surfa
es are notlarger than ≈ 5

3·12d3 whi
h is far below the number ≈ 13
36d3 resulting from Bihan's
onstru
tion [Bih03℄ whi
h is based on Viro's pat
hworking method.Conversely, we may ask if it is always possible to move the lines of a simple realline arrangement in su
h a way that all 
riti
al points whi
h have a 
riti
al valueof the same sign 
an be 
hosen to have the same 
riti
al value. If this were truethen it would be possible to improve our lower bound for the maximum number

µR

A1
(d) of real nodes on a real surfa
e of degree d slightly be
ause it is known thatthe upper bounds for the maximum number Mb(d) of bla
k 
ells are in fa
t exa
tfor in�nitely many d. E.g., in the already 
ited arti
le [Har81℄, Harborth gave anexpli
it arrangement of 13 straight lines whi
h has 1

3 ·132 + 1
3 ·13− 13 = 47 boundedbla
k regions. When regarding this arrangement as a polynomial of degree d = 13 ithas exa
tly one 
riti
al point with a negative 
riti
al value within ea
h of the bla
kregions. Su
h a polynomial would lead to a surfa
e with (

13
2

)
·⌈ 13−1

2 ⌉+ 47·⌊ 13−1
2 ⌋ =

750 > 732 nodes. Similarly, su
h a surfa
e of degree 9 would have 228 > 216 nodes.In the 
ase of degree 7 the 
onstru
tion would only yield 96 nodes whi
h is less thanthe number 99 found in [Lab04℄.6.3. Con
luding RemarksNoti
e that it is not 
lear that line arrangements are the best plane 
urves forour purpose, and we may ask: Is it possible to ex
eed the number of 
riti
al pointson two levels of the line arrangements FA2

R,d(x, y) using irredu
ible 
urves of higherdegrees? Either in the real or in the 
omplex 
ase? This is not true for the realfolding polynomials. E.g., those asso
iated to the root system B2 
onsist of manyellipses and yield surfa
es with fewer singularities (see [Bre05℄).We 
an also ask for the maximum number µR

A(d) of real Aj-singularities. It is
lear that 
onstru
tions similar to those in 
hapter 5 on page 67 
annot give the samenumber of real nodes be
ause of the intermediate value theorem (Zwis
henwertsatz).It would be ni
e to use real dessins d'enfants (see e.g., [Bru℄) to 
he
k whi
h numbersare a
tually possible to obtain.



A sexti
 with 30 real 
usps and 10 real nodes at in�nity, 
onstru
ted using analgorithm in 
hara
teristi
 zero.



CHAPTER 7An Algorithm in Chara
teristi
 ZeroWe give an algorithm (see also [Lab05a℄) that 
an be used to �nd hypersurfa
eswith many singularities within families of hypersurfa
es. As we will see, it is basedon very re
ent features of the 
omputer algebra system Singular. The idea tosu
h an algorithm is not so new. In fa
t, our main observation was to noti
e thatwe 
an use features of the most re
ent versions of this 
omputer algebra system toperform the algorithm on a 
omputer in our parti
ular 
ase.We des
ribe this algorithm using the example of the 
onstru
tion of a sexti
surfa
e in P3 with 35 
usps. From this, it is easy to �gure out how to pro
eed ingeneral. When we uploaded the preprint [Lab05a℄ to arXiv.org we believed thatthis 35-
uspidal example was the one with the maximum known number of 
usps.Only re
ently we realized that Gallarati's variant of B. Segre's 
onstru
tion (seese
tion 2.5 on page 24) leads to a sexti
 with 36 
usps. We present the algorithmhere be
ause it 
an 
ertainly be applied in many similar situations.In the works mentioned in part 1, the authors used geometri
 arguments toredu
e a problem depending on several parameters to polynomials ea
h dependingonly on one parameter. The roots of these polynomials 
ould then easily be foundby hand or by 
omputer algebra. But what 
an we do when there are no geometri
arguments available to redu
e the problem to equations in one variable ea
h? In this
ase, we 
an still use a similar approa
h by repla
ing root-�nding of a polynomialin one variable by primary de
omposition.7.1. The Family of 30-
uspidal Sexti
sAs our starting point, we take the 4-parameter family fs,t,u,v ⊂ P3 with dihedralsymmetry D5 de�ned by:(7.1) p := z · Π4
j=0

[
cos

(
2πj
7

)
x + sin

(
2πj
7

)
y − z

]

= z
16

[
x

(
x4 − 2·5·x2y2 + 5·y4

)

−5·z·
(
x2 + y2

)2
+ 4·5·z3·

(
x2 + y2

)
− 16·z5

]
,

qs,t,u,v := s·(x2 + y2) + t·z2 + u·zw + v·w2,
fs,t,u,v := p − q3

s,t,u,v.

p is the produ
t of z and 5 planes in P3(C) meeting in the point (0 : 0 : 0 : 1)with the symmetry D5 of the 5-gon with rotation axes {x = y = 0}. qs,t,u,v is also
D5-symmetri
, be
ause x and y only appear as x2 + y2.The generi
 surfa
e fs,t,u,v has 15·2 = 30 singularities of type A2 at the inter-se
tions of the tripled quadri
 qs,t,u,v with the (

6
2

) pairwise interse
tion lines of the
6 planes p. 2·5 = 10 of the singularities lie in the {z = 0} plane, the other 4·5 = 20not. The 
oordinates of the latter 20 
an be obtained from the 4 singularities inthe {y = 0} plane using the symmetry of the family. To see that the {y = 0} plane
ontains 4 
usps, note that p|y=0 = z · (z −x) · (x2 − 2xz− 4z2)2: For generi
 values85



86 7. AN ALGORITHM IN CHARACTERISTIC ZEROof the parameters, this doubled quadri
 fa
tor meets the tripled quadri
 qs,t,u,v in
2 · 2 points.Note that(7.2) fs,t,u,v(x, y, z, λw) = fs,t,λu,λ2v(x, y, z, w) ∀λ ∈ C∗,s.t. we 
an 
hoose v := 1 (it is easy to see that v = 0 
orresponds to a degenerate
ase). Therefore, we write:

fs,t,u := fs,t,u,1 and qs,t,u := qs,t,u,1.7.2. The Sexti
s with 35 CuspsTo �nd surfa
es in this 3-parameter family with more singularities, we 
omputethe dis
riminant Discfs,t,u
∈ C[s, t, u] of the family fs,t,u by �rst dividing out thebase lo
us (the interse
tions of the double lines of p with the quadri
 q) from thesingular lo
us (we use saturation, be
ause we have to divide out the base lo
us sixtimes):

sl :=

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z
,
∂f

∂w

)
,

bl :=

(
∂p

∂x
,
∂p

∂y
,
∂p

∂z
,

∂p

∂w
, q

)
,

I := sl : bl∞.Then we eliminate the variables x, y, z from this quotient. In fa
t, be
ause ofthe symmetry we restri
t our attention to the {y = 0} plane, whi
h speeds up the
omputations: Every singularity in the plane {y = 0} whi
h is not on the rotationaxes {x = y = 0} generates an orbit of length 5 of singularities of the same type.A short Singular 
omputation then gives the dis
riminantDiscfs,t,u
∈ Q[s, t, u],whi
h fa
torizes into Discfs,t,u

= Df,1 · Df,2 · Df,3, where:
Df,1 = 220·36 · s5 ·

(
24·s2 + 22·3·st + t2

)
· (s + t)

2

+
(
−219·36

)
· s5 ·

(
2·11·s2 + 19·st + 2·t2

)
· (s + t) · u2

+216·36 · s5 ·
(
41·s2 + 2·3·7·st + 2·3·t2

)
· u4

+
(
−214·33

)
· s3

·
(
2·33·7·s3u6 + 22·33·s2tu6 + 26·52·s3 − 25·52·s2t − 52·61·st2 − 53·t3

)

+212·33 · s3 ·
(
33·s2u6 − 25·52·s2 − 2·52·61·st − 3·53·t2

)
· u2

+210·33·52 · s3 · (61·s + 3·5·t) · u4

+
(
−26·53

)
·
(
22·33·s3u6 + 26·5·23·s3 + 25·3·5·s2t + 22·3·52·st2 + 52·t3

)

+24·3·54 ·
(
25·s2 + 23·5·st + 5·t2

)
· u2

+
(
−22·3·55

)
·
(
22·s + t

)
· u4

+55 ·
(
u4 − 22·u2 + 24

)
·
(
u2 + 22

)
,

Df,2 =
(
−24

)
· t2 + 23 · t ·

(
u2 + 2

)
+

(
2·u − (u2 + 22)

)
·
(
2·u + (u2 + 22)

)
,

Df,3 = 22 · t + (2 − u) · (2 + u) .We hope that some singularities of the dis
riminant 
orrespond to examplesof surfa
es fs,t,u with more A2-singularities. Note that only Df,1 depends on theparameter s. Using 
omputer algebra, it is easy to verify that the interse
tions of
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omponents Df,1, Df,2, Df,3 of Discfs,t,u
do not yield to surfa
es withmany additional singularities.So, we use Singular againto 
ompute the primary de
omposition of the singularlo
us of Df,1 over Q: sl(Df,1) = slf,1 ∩ slf,2 ∩ slf,3 ∩ slf,4 , where

slf,1 =
(
22·

(
22·s − t

)
+ u2, 26·33·s3 − 5

)

slf,2 =
(
− 22·

(
22·3·s + 5·t

)
+ 5·u2, 24·32·s2 + 22·3·5·s + 52

)

slf,3 =
(
215·33·t6 − 214·34·t5·u2 + 211·34·5·t4·u4 − 26·33·5·t3·

(
25·u6 − 11·31

)

+24·34·5·t2·
(
23·u6 − 11·31

)
·u2 − 22·34·t·

(
24·u6 − 5·11·31

)
·u4

+
(
23·33·u12 − 33·5·11·31·u6 + 26·52·193

)
,

211·32 · t4 − 211·32 · t3 · u2 + 28·33 · t2 · u4

−22 ·
(
25·32·tu6 − 22·5·7·19·211·s − 5·73·193·t

)

+u2 ·
(
23·32·u6 − 5·73·193

))

slf,4 =
(
22·3·s − 5, −4·(t + 1) + u2

)
.All these prime ideals de�ne smooth 
urves in the 3-dimensional parameterspa
e. When proje
ting the 
urve C3 de�ned by slf,3 to the s, t- or the s, u-plane,we get in both 
ases six straight lines de�ned by the equation(7.3) 215·33·s6 − 26·33·5·s3 + 52 = 0.This shows that C3 
onsists in fa
t of the union of six plane 
urves. Over thealgebrai
 extension Q(s), it is easy to 
ompute the equation of these:(7.4) C3,s = 5·u2 − 22·5·t − 211·32·s4 − 24·5·s ∈ Q(s)[t, u].To show that there is a surfa
e with 35 A2-singularities, we take the most simplepoint of this 
urve, the one with u = 0:Theorem 7.1 (35-
uspidal Sexti
). Let s0 ∈ C be one of the six roots of (7.3).Let (t0, 0) be the point on C3,s0

with u = 0. Then the sexti
 S35 := fs0,t0,0 ⊂ P3has exa
tly 35 singularities of type A2 and no other singularities.Proof. We use 
omputer algebra. The Singular s
ript and its output 
anbe downloaded from the webpage [Lab03a℄. Here, we give the basi
 ideas. With
u = 0 in C3,s0

, we �nd: t0 = −4·s0

(
27·32

5 ·s3
0 + 1

)
. For the 
orresponding surfa
e(7.5) S35 := f

s0,−4·s0

“

27·32

5
·s3

0
+1

”

,0we �rst 
he
k that the total milnor number is 70. Then we verify that the surfa
ehas 35 singularities of type A2: For ea
h orbit of singularities, we 
ompute the idealof one of the singularities and 
he
k expli
itly that it is a 
usp. To show this itsu�
es to verify that its milnor number is exa
tly two. E.g., for the orbit of the�ve non-generi
 singularities, we take the 
usp Syw that lies in the {y = 0} plane:
Syw =

(
−27·32

5
s3
0 + 8 : 0 : 1 : 0

)
.

�Note that the 
oe�
ients of the surfa
e S35 are not real. In fa
t, the ideal slf,3does not 
ontain any real point, be
ause equation (7.3) does not have any real root.In parti
ular, it is not possible to use the software surf [End01℄ to draw an image
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. This also holds for the more general family fs,t,u,v be
ause of equation(7.2). The 
urves de�ned by the ideals slf,2 and slf,4 lead to only one additionalhigher singularity, and we are not interested in su
h examples.But in the 
ase of the prime ideal slf,1, we get surfa
es with 30 real A2-singularities and 10 real A1-singularities (see also �g. 7.1). Again, we 
hoose apoint in the parameter-spa
e with u = 0:Theorem 7.2. The sexti
 fs0,t0,0 ⊂ P3, where s0 := 1
3·22

3
√

5 ∈ R, t0 = 22·s0 ∈
R, has exa
tly 30 singularities of type A2, 10 singularities of type A1, and no othersingularities. Furthermore, all the singularities are real.Proof. Similar to the pre
eding one. �

Figure 7.1. A sexti
 with 30 
usps and 10 nodes at in�nity. Somemovies illustrating this are available from [Lab03a℄.7.3. Con
luding RemarksIn our appli
ation, we 
ould restri
t our attention to a plane be
ause of thesymmetry of the family, so that the number of variables de
reased. This speeded upthe 
omputations. But the 
ase of septi
s with many nodes was too time-
onsumingto be treated in this way: Our 
onstru
tion of a 99-nodal surfa
e of degree 7 (seenext 
hapter) involves 
omputations in positive 
hara
teristi
s and then liftings to
hara
teristi
 zero using the geometry of the examples.In other appli
ations, it might be easy to divide out the base lo
us and to
ompute the dis
riminant, e.g. by using the geometry of the family. Then it onlyremaines to study the dis
riminant for �nding examples whi
h have more singular-ities than the generi
 member of the family.



7.4. THE SINGULAR CODE 897.4. The Singular Code"::::::: :::::";"A Sexti
 with $35$ Cusps";"(Oliver Labs)";"";"This Singular s
ript 
omputes the parameters s,t,u,v,";"s.t. the surfa
e f_{s,t,u,v} of the arti
le has $35$ 
usps.";"";"This s
ript also 
ontains the proof that this surfa
e has ";"$35$ su
h singularities and no other singularities.";"::::::: :::::";"";LIB "primde
.lib";LIB "sing.lib";LIB "
lassify.lib";LIB "zeroset.lib";pro
 my
odim(ideal stdi)"ASSUME: stdi is already in standard bases form!"{ return(nvars(basering)-dim(stdi));}pro
 std_primde
GTZ(ideal I)"RETURN: A list, similar to the one returned by primde
GTZ, but withsome extra information.Calls primde
GTZ and then 
alls std() for ea
h of the prime idealsrepla
e the prime ideals by their standard-basis.The third sub-item of ea
h item of the list isthe dimension of the prime ideal,the fourth sub-item is its multipli
ity."{ list pd = primde
GTZ(I);list pd_neu;int i;list 
oords;ideal stdtmp;for(i=1; i<=size(pd); i++) {stdtmp = std(pd[i℄[2℄);pd_neu[i℄ = list(pd[i℄[1℄, stdtmp, dim(stdtmp), mult(stdtmp));}return(pd_neu);}//////////////////////////////int pr = 0;



90 7. AN ALGORITHM IN CHARACTERISTIC ZERO//////////////// The ring in whi
h the algebrai
 number t is defined://ring r = pr, (x,y,z,w,s,t,u,v), dp;// The 6 planes p:poly p = z*(16*x^5-160*x^3*y^2+80*x*y^4-80*x^4*z-160*x^2*y^2*z+320*x^2*z^3-80*y^4*z+320*y^2*z^3-256*z^5)/256;// The quadri
 q:poly q = (s*(x^2+y^2) +t*z^2 +u*w*z +v*w^2);// The family of sexti
s with 30 
usps:poly f = p - q^3;ideal jf = diff(f,w), diff(f,y), diff(f,z), diff(f,x);ideal jfy = substitute(jf, y,0);ideal bl = diff(p,x), diff(p,z), diff(p,w), diff(p,y), q;ideal bly = substitute(bl, y,0);"";"";"sl:";"";jfy;"";"";"bl:";"";bly;"";"";"Compute I and eliminate x and z:";"";poly dis
r;"";"sat...";ideal I = sat(jfy,bly)[1℄;"";"std...";I = std(I);"";"eliminate x and z...";ideal el = eliminate(I,xz);el;dis
r = el[1℄;"";"";"From now on we 
hoose v=1.";"";//map mp = r, x,y,z,w,s,t,1,v;map mp = r, x,y,z,w,s,t,u,1;dis
r = mp(dis
r);"";"";"Fa
torize Dis
_f:";"";fa
torize(dis
r);"";poly mpf = mp(f);//"dis
r for u=1:";dis
r;// the 
onditions on the parameters that yield// additional singularities on the x=y=0 axes// (pre
omputed)



7.4. THE SINGULAR CODE 91poly 
onduv(1), 
onduv(2);
onduv(1) = 4*v*(t+1)-u^2;
onduv(2) = (u^2-4tv)^2 + 4*v*(u^2+4*v*(1-t));// for the dis
riminant, we do not want the// 
onditions 
onduv(i) that des
ribe the 
ases// that give a singularity on the x=y=0 axes:"";"";"Noti
e that the largest 
omponent is exa
tly the one that des
ribes";"the 
ases that do not give a singularity on the x=y=0 axes:";"";dis
r = quotient(dis
r,mp(
onduv(1)))[1℄;dis
r = quotient(dis
r,mp(
onduv(2)))[1℄;dis
r;"";"";"Primary de
omposition of sl(D_{f,1}) (takes a few se
onds):";"";if(0==1) {// The following takes a few se
onds.// So, by default, we do not exe
ute this part of the s
ript.// Change 0==1 to 1==1 in the pre
eding if-statement// if you want this part to be exe
uted.list sl_f = std_primde
GTZ(slo
us(dis
r));sl_f;} else {"skipped (pre
omputed).";}ideal sl_f3 = u4-68su2-8tu2+1216s2+272st+16t2,48s2u2-2496s3-192s2t+5,18432s4-5u2+80s+20t;poly els = eliminate(sl_f3, tu)[1℄;"";"The six values for s (equation (3)):";"";els;"-----";"";"Swit
h to the extension Q(s):";"";string els_str = string(els);"els:",els_str;ring rs = (0,s),(t,u,x,y,z,w),dp;exe
ute("minpoly = "+els_str+";");ideal sl_f3 = imap(r,sl_f3);sl_f3 = std(sl_f3);"";"";"equation (4):";"";sl_f3;"";"";"The value t_0(s) in the proof the $35$-
uspidal sexti
 theorem:";"";poly p_t = subst(sl_f3[1℄, u, 0);number n_t = lead
oef(- ((p_t / lead
oef(p_t)) - t));n_t;"";"";"The equation of S_{35}:";"";poly f = imap(r,mpf);f = substitute(f, u,0, t,n_t);f;"-----";"";"The total milnor number:";"";ideal jf = diff(f,x), diff(f,y), diff(f,z), diff(f,w);



92 7. AN ALGORITHM IN CHARACTERISTIC ZEROjf = std(jf);"
odim:", my
odim(jf), ", milnor:", mult(jf);"";"";"The total milnor number on w=1:";"";poly fw = substitute(f, w,1);ideal jfw = fw, diff(fw,x), diff(fw,y), diff(fw,z);jfw = std(jfw);"
odim:", my
odim(jfw), ", milnor:", mult(jfw);"";"";"The total milnor number on y=0, w=0, z=1:";"";poly fyw = substitute(f, y,0, w,0, z,1);ideal jfyw = fyw, diff(fyw,x), diff(fyw,z);// first throw away the non-existent point (0:0:0:0):jfyw = sat(jfyw,xyzw)[1℄;// then 
ompute the total milnor number:jfyw = std(jfyw);"
odim:", my
odim(jfyw), ", milnor:", mult(jfyw);"";"Che
k that this is exa
tly one point by 
omputing the radi
al:";"";ideal radjfyw = radi
al(jfyw);radjfyw = std(radjfyw);"
odim:", my
odim(radjfyw), ", milnor:", mult(radjfyw);"";"This shows that S_{yw} is an A_2 singularity.";"";"";"";"The ideal des
ribing the point S_{yw} in the affine z=1 
hart:";"";list lSyw = primde
GTZ(jfyw);ideal ptSyw = y,w,subst(lSyw[1℄[2℄,z,1);ptSyw;"-----";"";"Che
k that all the 30 other singularities are non-nodes:";"";fw = substitute(f, w,1);jfw = fw, diff(fw,x), diff(fw,y), diff(fw,z);// then 
ompute the total milnor number:jfw = std(jfw);"
odim:", my
odim(jfw), ", milnor:", mult(jfw);ideal nonnodes = fw, jfw, det(ja
ob(ja
ob(fw)));nonnodes = std(nonnodes);"
odim(nonnodes):", my
odim(nonnodes), ", milnor(nonnodes):", mult(nonnodes);"-----";"";"Che
k that there is no singularity on y=0, z=0 and w=1:";"";ideal jfyz = fw, diff(fw,x), diff(fw,y), diff(fw,z);jfyz = substitute(jfyz, y,0, z,0);jfyz = std(jfyz);"dim:",dim(jfyz), ", milnor:", mult(jfyz);"-----";"";"Che
k that all the 10 singularities on z=0, w=1 are A_2s:";"";"Compute the total milnor number:";ideal jfz = subst(jfw,z,0);jfz = std(jfz);"
odim:", my
odim(jfz), ", milnor:", mult(jfz);"";"Che
k that there are exa
tly 10 singularities on z=0:";"radi
al...";ideal radjfz = radi
al(jfz);"std...";



7.4. THE SINGULAR CODE 93radjfz = std(radjfz);"
odim:", my
odim(radjfz), ", milnor:", mult(radjfz);"";"As all the 10 are non-nodes, they all have milnor number 2";"and are thus A_2-singularities.";"-----";"";"Che
k that all the 4 singularities on y=0, w=1 are A_2s:";"";"Compute the total milnor number:";ideal jfy = subst(jfw,y,0);jfy = std(jfy);jfy;"
odim:", my
odim(jfy), ", milnor:", mult(jfy);"";"Che
k that there are exa
tly 4 singularities on y=0:";"Compute the primary de
omposition of jfy...";list ljfy = std_primde
GTZ(jfy,1);ljfy;"The 3rd and 4th entry are dimension and multipli
ity";"of the prime 
omponent:";"
odim:", ljfy[1℄[3℄, ", milnor:", ljfy[1℄[4℄;"";"As all the 4 are non-nodes, they all have milnor number 2";"and are thus A_2-singularities.";"From the symmetry of the 
onstru
tion we thus know that";"all the 20=4*5 singularities";"whi
h are in the D_5-orbits of these four singularities";"are A_2-singularities.";"-----";"";"Thus the surfa
e S_{35} of degree 6 has exa
tly 35 
usps";"and no other singularities.";"";"This 
ompletes the proof the theorem.";"";$;



A septi
 with 99 nodes, 
onstru
ted using the geometry over prime �elds.



CHAPTER 8Using the Geometry over Prime FieldsWe have already seen that the restri
tions on the maximum number µA1
(d) ofnodes on a nodal surfa
e of degree d known so far are as follows:degree 2 3 4 5 6 7 8 9 10 11 12 d

µA1
(d) ≥ 1 4 16 31 65 93 168 216 345 425 600 5

12d3

µA1
(d) ≤ 1 4 16 31 65 104 174 246 360 480 645 4

9d3In this 
hapter we show (see also [Lab04℄):(8.1) µA1
(7) ≥ µR

A1
(7) ≥ 99.The upper bound µ(7) ≤ 104 is given by Var
henko's spe
trum bound (se
tion3.7). Noti
e that for d = 7 Miyaoka's bound (se
tion 3.10) is 112, but Givental'sbound (se
tion 3.6) also 
omputes to 104.The previously known septi
 with the greatest number of nodes was the exampleof Chmutov with 93 nodes (see se
tion 4.1 on page 45). For d ≤ 5 and theeven degrees d = 6, 8, 10, 12 there are examples ex
eeding Chmutov's lower bound:se
tions 4.5, 4.7, 4.9. These had been obtained by using some beautiful geometri
arguments based on Rohn's (se
tion 1.3) and B. Segre's idea (se
tion 2.4).Here, we explain how to use the geometry of 
omputer algebra experiments overprime �elds to treat the 
ase d = 7 and to �nd the �rst surfa
e of odd degree greaterthan 5 that ex
eeds Chmutov's general lower bound. Given an expli
it equation of afamily of hypersurfa
es, there are some other approa
hes for �nding those exampleswith the greatest number of nodes. We were not able to apply the te
hniques whi
hdo not involve 
omputer algebra and whi
h were used for degree d = 6, 8, 10, 12be
ause for these one needs a priori some good idea on the geometry of the surfa
e.We neither su

eeded using the 
omputer algebra te
hniques from 
hapter 7 in thepresent 
ase be
ause of 
omputer performan
e restri
tions.Instead, we 
hoose a more geometri
 and experimental approa
h to study thefamily. The idea to use experiments over prime �elds was already used by otherpeople, e.g. S
hreyer and Tonoli [ST02℄. But in their 
ase they were able to usedeformation theoreti
al arguments to show that their examples lift to some spe-
ial Calabi-Yau threefolds in 
hara
teristi
 zero. In our 
ase, we lift the modularexamples expli
itly to 
hara
teristi
 zero using their geometry.8.1. The FamilyInspired by many authors (see in parti
ular se
tions 1.3, 4.2, 4.5, 4.7), we lookfor septi
s with many nodes in P3(C) within a 7-parameter family of surfa
es

Sa1,a2,...,a7
:= P − Ua1,a2,...,a795



96 8. USING THE GEOMETRY OVER PRIME FIELDSof degree 7 admitting the dihedral symmetry D7 of a 7-gon:
P := 26 · Π6

j=0

[
cos

(
2πj

7

)
x + sin

(
2πj

7

)
y − z

]

= x·
[
x6 − 3·7·x4y2 + 5·7·x2y4 − 7·y6

]

+7·z·
[(

x2 + y2
)3 − 23·z2·

(
x2 + y2

)2
+ 24·z4·

(
x2 + y2

)]
− 26·z7,

Ua1,...,a7
:= (z + a5w)

(
a1z

3 + a2z
2w + a3zw2 + a4w

3 + (a6z + a7w)(x2 + y2)
)2

.

P is the produ
t of 7 planes in P3(C) meeting in the point (0 : 0 : 0 : 1) andadmitting D7-symmetry with rotation axes {x = y = 0}: In fa
t, P is invariantunder the map y 7→ −y and P ∩ {z = z0} is a regular 7-gon for z0 6= 0. U is also
D7-symmetri
, be
ause x and y only appear as x2 + y2.As we have already seen in se
tion 1.3 on Rohn's 
onstru
tion of nodal quar-ti
s, su
h a surfa
e S has generi
ally nodes at the 3 · 21 = 63 interse
tions of the(
7
2

)
= 21 doubled lines of P with the doubled 
ubi
 of U . We look for parameters

a1, a2, . . . , a7, s.t. the 
orresponding surfa
e has 99 nodes.As Sa1,a2,...,a7
(x, y, z, λw) = Sa1,λa2,λ2a3,λ3a4,λa5,a6,λa7

(x, y, z, w) ∀λ ∈ C∗, we
hoose a7 := 1. Moreover, experiments over prime �elds suggest that the maximumnumber of nodes on su
h surfa
es is 99 and that su
h examples exist for a6 = 1. Aswe are mainly interested in �nding an example with 99 nodes, we restri
t ourselvesto the sub-family:
S := Sa1,a2,a3,a4,a5,1,1 = P − Ua1,a2,a3,a4,a5,1,1.Some other 
ases, e.g. a6 = 0, also lead to 99-nodal septi
s (see e.g. 
hapter 9).8.2. Redu
tion to the Case of Plane CurvesTo simplify the problem of lo
ating examples with 99 nodes within our family

S, we restri
t our attention to the {y = 0} -plane and sear
h for plane 
urves S|y=0(we write Sy for short) with many nodes. This is motivated by the symmetry ofthe 
onstru
tion:Lemma 8.1 (see [End96℄). A member S = Sa1,a2,a3,a4,a5,1,1 of our family ofsurfa
es has only ordinary double points as singularities, if (1 : i : 0 : 0) /∈ S andthe surfa
e does only 
ontain ordinary double points as singularities in the plane
{y = 0}. If the plane septi
 Sy has exa
tly n nodes and if exa
tly nxy of these nodesare on the axes {x = y = 0} then the surfa
e S has exa
tly nxy +7 · (n−nxy) nodesand no other singularities. Ea
h singularity of Sy whi
h is not on {x = y = 0}gives an orbit of 7 singularities of S under the a
tion of the dihedral group D7.Proof. Be
ause of the D7-symmetry of the 
onstru
tion, we only have to showthat there are no other singularities than the 
laimed ones. It is easy to prove (see[End96, p. 18, 
or. 2.3.10℄ for details) that any isolated singularity of S whi
h isnot 
ontained in one of the orbits of the nodes of Sy would yield a non-isolatedsingularity whi
h interse
ts the plane {y = 0}. But this 
ontradi
ts the assumptionthat the surfa
e S does only 
ontain ordinary double points on {y = 0}. �So, we �rst look for septi
 plane 
urves of the form Sy with many nodes, then weverify that these singularities are indeed also nodes of the surfa
e. Via the lemma,we are then able to 
on
lude that the surfa
e has only ordinary double points. In



8.3. FINDING SOLUTIONS OVER SOME PRIME FIELDS 97order to understand the geometry of the plane septi
 Sy better we look at thesingularities that o

ur for generi
 values of the parameters. First, we 
ompute:
P |y=0 = x7 + 7 · x6z − 7 · 23 · x4z3 + 7 · 24 · x2z5 − 26 · z7

=
(x − z)

24
·
(
x + (−ρ)z︸ ︷︷ ︸

=:L1

)2 ·
(
2x + (ρ2 + 4ρ)z︸ ︷︷ ︸

=:L2

)2 ·
(
2x + (−ρ2 − 2ρ + 8)z︸ ︷︷ ︸

=:L3

)2
,

U |y=0 = (z + a5w)
(
(z + w)x2 + a1z

3 + a2z
2w + a3zw2 + a4w

3

︸ ︷︷ ︸
=:C

)2
,where ρ satis�es:(8.2) ρ3 + 22ρ2 − 22ρ − 23 = 0.The three points Gij of interse
tion of C with the line Li are ordinary doublepoints of the plane septi
 Sy = P |y=0 −U |y=0 for generi
 values of the parameters,s.t. we have 3 · 3 = 9 generi
 singularities (see �g. 8.1).

z = 0

x = 0

z = −1

L1

L2

L3

C

Sy,1

C

Figure 8.1. The three doubled lines Li and the doubled 
ubi
 Cinterse
t in 3 · 3 = 9 points Gij . These are the generi
 singularitiesof the plane septi
 Sy.8.3. Finding Solutions over some Prime FieldsIn the early times of 
omputer algebra, the software was only able to workover �nite prime �elds. It is well-known that the redu
tion modulo a prime p of ahypersurfa
e has the same number and type of singularities for almost all p. So, the
ommon pra
ti
e in the early 1990's was to 
ompute this for a hopefully su�
ientnumber of di�erent primes.We take the other dire
tion. By running over all possible parameter 
ombina-tions over some small prime �elds Fp using the 
omputer algebra system Singular[GPS01℄, we �nd some 99-nodal surfa
es over these �elds: For a given set of pa-rameters a1, a2, . . . , a5, we 
an easily 
he
k the a
tual number of nodes on the
orresponding surfa
e using 
omputer algebra (see [GP02, appendix A, p. 487℄).



98 8. USING THE GEOMETRY OVER PRIME FIELDSAs indi
ated in the previous se
tion, we work in the plane {y = 0} for faster
omputations. It turns out that the greatest number of nodes on Sy is 15 over thesmall prime �elds Fp, 11 ≤ p ≤ 53: See table 8.1 on the fa
ing page. The prime�elds Fp, 2 ≤ p ≤ 7, are not listed be
ause they are spe
ial 
ases: These primesappear as 
oe�
ients or exponents in the equation of our family. In ea
h of the 
aseswe 
he
ked, one of the 15 singular points lies on the axes {x = 0}, su
h that the
orresponding surfa
e has exa
tly 14 · 7 + 1 = 99 nodes and no other singularities.8.4. The Geometry of the 15-nodal septi
 Plane CurveTo �nd parameters a1, a2, . . . , a5 in 
hara
teristi
 0 we want to use geometri
properties of the 15-nodal septi
 plane 
urve Sy. But as we do not know any su
hproperty yet, we use our prime �eld examples to get some good ideas:Observation 8.2. In all our prime �eld examples of 15-nodal plane septi
s Sy,we have:(1) Sy splits into a line Sy,1 and a sexti
 Sy,6: Sy = Sy,1 · Sy,6. The plane
urve Sy,6 of degree 6 has 15 − 6 = 9 singularities. Note that this prop-erty is similar to the one of the 31-nodal D5-symmetri
 quinti
 in P3(C)
onstru
ted by W. Barth (se
tion 4.2 on page 47).The line and the sexti
 have some interesting geometri
 properties (see �g. 8.1 onthe pre
eding page and �g. 8.3 on page 102):(2) Sy,1 ∩ Sy,6 = {R, G1j1 , G2j2 , G3j3 , O1, O2}, where R is a point on the axes
{x = 0} and the Gijk

are three of the 9 generi
 singularities Gij of Sy,one on ea
h line Li, and O1, O2 are some other points that neither lie on
{x = 0}, nor on one of the Li.(3) The sexti
 Sy,6 has the six generi
 singularities Gij , (i, j) ∈ {1, 2, 3}2 \
{(1, j1), (2, j2), (3, j3)}, and three ex
eptional singularities: E1, E2, E3.In many prime �eld experiments, we have furthermore:(4) In the proje
tive x, z, w-plane, the point R has the 
oordinates (0 : −1 : 1),s.t. the line Sy,1 has the form Sy,1 : z + t · x + w = 0 for some parameter
t (see also table 8.1 on the fa
ing page).The other 
ases (R = (0 : c : 1), c 6= −1) lead to more 
ompli
ated equations andwill not be dis
ussed here.Using this observation as a guess for our septi
 in 
hara
teristi
 0, we obtainseveral polynomial 
onditions on the parameters. Using Singular to eliminatevariables, we �nd the following relation between the parameters a4 and t:(8.3) t ·

(
a4t

3 + t︸ ︷︷ ︸
=:α

)2
+ t − 1 = 0,whi
h 
an be parametrized by α: t = − 1

1+α2 , a4 = (α(1+α2)−1)(1+α2)2. Furthereliminations allow us to express all the other parameters in terms of α:
• a1 = α7 + 7α5 − α4 + 7α3 − 2α2 − 7α − 1,
• a2 = (α2 + 1)(3α5 + 14α3 − 3α2 + 7α − 3),
• a3 = (α2 + 1)2(3α3 + 7α − 3),

• a5 = − α2

1+α2 .



8.5. THE 1-PARAMETER FAMILY OF PLANE SEXTICS 99Field a1 a2 a3 a4 a5 Sy,1 α

F11 2 3 5 2 -5 z = x − w α = −3

F19 -7 -2 7 1 8 z = 8x − w α = 7
F19 2 0 1 9 7 z = 9x − w α = −4
F19 5 -9 7 -3 -1 z = 2x − w α = −3

F23 -5 11 10 1 7 z = −9x − w α = −2

F31 -15 -13 -5 13 -10 z = −2x − w α = −13
F31 1 -2 14 -9 11 z = 15x − w α = −11
F31 14 -10 -13 -14 -11 z = −13x − w α = −7

F43 -11 15 0 -13 -6 z = −6x − w α = 7
F43 20 16 -1 -14 10 z = −12x − w α = 14
F43 -9 3 -3 -11 5 z = 18x − w α = −21

F53 -8 20 14 18 11 z = 25x − w α = 4
F53 -2 -10 -14 -26 16 z = −9x − w α = 24
F53 10 25 -4 22 25 z = −16x − w α = 25Table 8.1. A few examples of parameters giving 15-nodal sep-ti
 plane 
urves (and 99-nodal surfa
es) over prime �elds (see[Lab03a℄ for more exhaustive tables).8.5. The 1-parameter Family of Plane Sexti
sOn
e more we use our expli
it examples of 15-nodal septi
 plane 
urves overprime �elds to �nally be able to write down a 
ondition for α in 
hara
teristi
 0.First, note that we 
an now easily obtain the equation of Sy,6 by dividing theequation of our septi
 
urve Sy by the equation of the line Sy,1 = z + tx + w =

z − 1
1+α2 x + w. Sy,6 is a sexti
 whi
h has 6 nodes for generi
 α, but should have 9double points for some spe
ial values of α. One idea to determine these parti
ularvalues is to �nd a geometri
 relation between the 6 generi
 singular points and the

3 ex
eptional ones.8.5.1. Three Coni
s. Looking at the equations des
ribing the singular pointsof our examples of 9-nodal sexti
s Sy,6 over the prime �elds, we see the following:Observation 8.3. For all our 9-nodal examples of plane sexti
s over prime�elds, there are three 
oni
s through six of these points ea
h (see �g. 8.2 on the nextpage):(1) one 
oni
 C0 through the 6 generi
 singularities,(2) one 
oni
 C1 through the 3 ex
eptional singularities and 3 of the generi
ones,(3) one 
oni
 C2 through the 3 ex
eptional singularities and the other 3 generi
ones.Moreover, the three 
oni
s have the following properties over the prime �elds:(4) C1 has the form:(8.4) C1 : x2 + kz2 + (k + 4)zw = 0,
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z = 0

x = 0

z = −1

C0

C1

C2

E1

E2

E3

C2

C1

C0

Figure 8.2. Three 
oni
s relating the 9 double points of the sexti

Sy,6. E1, E2, and E3 (bla
k) are the ex
eptional singularities (i.e.they do not lie on one of the lines Li, see �g. 8.1 on page 97).The white points are the generi
 singularities, 
oming from theinterse
tion of the doubled 
ubi
 C with the three doubled lines
Li.where k is a still unknown parameter. In parti
ular, C1 is symmetri
 withrespe
t to x 7→ −x and 
ontains the point (0 : 0 : 1).(5) C0 interse
ts the other two 
oni
s on the {x = 0} -axes (see �g. 8.2):(8.5) X1 := C0 ∩ C1 ∩ {x = 0}, X2 := C0 ∩ C2 ∩ {x = 0}.To determine the new parameter k in equation (8.4), we will use (8.5). We
ompute the two points of C0 on the {x = 0} -axes expli
itly using Singular:First, the ideal Igen

Sy,6
des
ribing the six generi
 singularities of Sy,6 
an be 
omputedfrom the ideal Igen

Sy
:= (C, L1L2L3) des
ribing the 9 generi
 singularities of Sy by
al
ulating the following ideal quotient: Igen

Sy,6
= Igen

Sy
: Sy,1. Now, the equation of

C0 
an be obtained by taking the degree-2-part of the ideal Igen
Sy,6

:(8.6) αx2 + (α3 + 5α − 1)xz + (α3 + α − 1)xw
C0 : (α5 + 6α3 − α2 + α − 1)z2 + (2α5 + 8α3 − 2α2 + 6α − 2)zw

+(α5 + 2α3 − α2 + α − 1)w2 = 0.Thus, {P+, P−} := C0 ∩ {x = 0} =
{(

0 : −2(α3+3α−1)(1+α2)±β(α)
2(α5+6α3−α2+α−1) : 1

)}
, where(8.7) β(α)2 := (α3 + 3α − 1)2(1 + α2)2

−4(α5 + 6α3 − α2 + α − 1)(1 + α2)(α3 + α − 1).

C1 interse
ts the {x = 0} -axes in exa
tly two points: (0 : 0 : 1) and X1.Hen
e, we 
an determine the two possibilities for the parameter k ∈ Q(α, β(α)) inequation (8.4) for C1: Together with the z and w-
oordinates of the points P±,
C1 ∩ {x = 0} = {kz2 + kzw + 4zw = 0} leads to the following two possibilities:(8.8) C1 : x2 +

−4P±
z

P±
z (P±

z + 1)
z(z + w) + 4zw = 0.



8.6. THE EQUATION OF THE 99-NODAL SEPTIC 1018.5.2. The Condition on α. The equations of the 
oni
s C0 and C1 willallow us to 
ompute the 
ondition on α, s.t. the sexti
 Sy,6 has 9 singularities, usingthe following (see observation 8.3 and �g. 8.2):
• C0 interse
ts the three doubled lines Li exa
tly in the six generi
 singu-larities.
• C1 interse
ts the three doubled lines Li exa
tly in three of these six generi
singularities and the origin (whi
h 
ounts three times).Thus, the set of z-
oordinates of the three points (C1 ∩ L1L2L3) \ {(0 : 0 : 1)}has to be 
ontained in the set of z-
oordinates of the six points C0 ∩L1L2L3. Thismeans that the remainder q of the following division (resx denotes the resultantwith respe
t to x)(8.9) resx(C0, L1L2L3) = p(z) ·

(
1

z3
· resx(C1, L1L2L3)

)
+ q(z)should vanish: q = 0.As the degree of the remainder is deg(q) = 2, this gives 3 
onditions on α and

β(α), 
oming from the fa
t that all the 3 
oe�
ients of q(z) have to vanish. It turnsout that it su�
es to take one of these, the 
oe�
ient of z2, whi
h 
an be writtenin the form c(α) + β(α)d(α), where c(α) and d(α) are polynomials in Q[α]. As a
ondition on α only we 
an take:
cond(α) :=

(
c(α) + β(α)d(α)

)
·
(
c(α) − β(α)d(α)

)
∈ Q[α],whi
h is of degree 150.This 
ondition cond(α) vanishes for those α for whi
h the 
orresponding surfa
ehas 99 nodes and for several other α. To obtain a 
ondition whi
h exa
tly des
ribesthose α we are looking for, we fa
torize cond(α) = f1 ·f2 · · · fk (e.g., using Singularagain). Substituting in ea
h of these fa
tors our solutions over the prime �elds, wesee that the only fa
tor that vanishes is: 7α3 + 7α + 1 = 0.8.6. The Equation of the 99-nodal Septi
Up to this point, it is still only a guess � veri�ed over some prime �elds � thatthe values α satisfying the 
ondition above give 99-nodal septi
s in 
hara
teristi
 0.But it turns out that we have indeed:Theorem 8.4 (99-nodal Septi
). Let α ∈ C satisfy:(8.10) 7α3 + 7α + 1 = 0.Then the surfa
e Sα in P3(C) of degree 7 with equation S99 := Sα := P − Uα hasexa
tly 99 ordinary double points and no other singularities, where

P := x·
[
x6 − 3·7·x4y2 + 5·7·x2y4 − 7·y6

]

+7·z·
[(

x2 + y2
)3 − 23·z2·

(
x2 + y2

)2
+ 24·z4·

(
x2 + y2

)]
− 26·z7,

Uα := (z + a5w)
(
(z + w)(x2 + y2) + a1z

3 + a2z
2w + a3zw2 + a4w

3
)2

,

a1 := − 12
7 α2 − 384

49 α − 8
7 , a2 := − 32

7 α2 + 24
49α − 4,

a3 := −4α2 + 24
49α − 4, a4 := − 8

7α2 + 8
49α − 8

7 ,

a5 := 49α2 − 7α + 50.
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z = 0

x = 0

z = −1

Sy,1

E1

E2

E3

Sy,6

R

Figure 8.3. The 15-nodal plane septi
 SyαR
= Sy,1αR

·Sy,6αR

(see(8.11) on page 102); the singularities of the sexti
 Sy,6αR

are markedby large 
ir
les: The three ex
eptional singularities E1, E2, E3 aremarked in bla
k, the generi
 singularities in white. The �ve left-most nodes are real isolated ones. Only �ve of the six interse
tionsof the line Sy,1αR

and the sexti
 Sy,6αR

are visible be
ause we justshow a small part of the whole (x, z)-plane.There is exa
tly one real solution αR ∈ R to the 
ondition (8.10),(8.11) αR ≈ −0.14010685,and all the singularities of SαR
are also real.Proof. By 
omputer algebra. The total tjurina number (i.e., 99) of Sα 
an be
omputed as follows:ring r = (0, alpha), (x, y, w, z), dp; minpoly = 7*alpha^3 + 7*alpha + 1;poly S_alpha = ...;ideal sl = ja
ob(S_alpha); option(redSB); sl = std(sl);degree(sl); // gives: proj. dim: 0, mult: 99Using the hessian 
riterion, we 
an 
he
k in a similar way that the singularitiesare all nodes:matrix mHess = ja
ob(ja
ob(S)); ideal nonnodes = minor(mHess,2), sl;nonnodes = std(nonnodes); degree(nonnodes); // gives: proj. dim: -1See [Lab03a℄ for the 
omplete Singular 
ode and for more information whi
hmay help you to verify the result by hand. Using the geometri
 des
ription of thesingularities of the plane septi
 given in the previous se
tions, it is straightforwardto verify the reality assertion (see �g. 8.4 for a visualization).

�8.7. Further RemarksThe existen
e of the real αR allows us to use our tool surfex [HLM05℄ to
ompute an image of the 99-nodal septi
 SαR
(�g. 8.4 on the fa
ing page). When
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Figure 8.4. A part of the a�ne 
hart w = 1 of the real septi
with 99 nodes, see [Lab03a℄ for more images and movies.denoting the maximum number of real singularities a septi
 in P3(R) 
an have by
µR(7), we get, with the remarks mentioned in the introdu
tion:Corollary 8.5.

99 ≤ µR(7) ≤ µ(7) ≤ 104.Note that the previously known lower bound, 93, was rea
hed by S. V. Chmu-tov's surfa
e (se
tion 4.1). It 
an be 
omputed using deformation theory and Sin-gular (see se
tion 4.6 on page 51) that the spa
e of obstru
tions for globalizing alllo
al deformations is zero. We thus obtain:Corollary 8.6. There exist surfa
es of degree 7 in P3(R) with exa
tly k realnodes and no other singularities for k = 0, 1, 2, . . . , 99.Re
ently, there has been some interest in surfa
es that do exist over some �nite�elds, but whi
h are not liftable to 
hara
teristi
 0. The redu
tion of our 99-nodalsepti
 Sα modulo 5 (note: 1 ∈ F5 satis�es (8.10): 7·13 + 7·1 + 1 ≡ 0 modulo 5)neither gives a 99-nodal surfa
e nor a highly degenerated one as one might expe
tbe
ause the exponent 5 appears several times in the de�ning equation. Instead, we
an easily verify the following using 
omputer algebra:Corollary 8.7. For α5 := 1 ∈ F5 the surfa
e Sα5
⊂ P3(F5) de�ned as in theabove theorem has 100 nodes and no other singularities.Of 
ourse, not all the 
oordinates of its singularities are in F5, but in somealgebrai
 extension. The septi
 has similar geometri
 properties as our 99-nodalsurfa
e; in addition it has one node at the interse
tion of the {x = y = 0} axes and

{w = 0}. Until now, we were not able to determine if this 100-nodal septi
 de�nedover F5 
an be lifted to 
hara
teristi
 zero.
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tureWe hope to be able to apply our te
hnique for �nding surfa
es with manynodes within families of surfa
es to similar problems. E.g., it should be possible to
onstru
t surfa
es with dihedral symmetry of degree 9 and 11 with many ordinarydouble points. In fa
t, our experiments over prime �elds suggest the following
onje
ture whi
h is already established for d = 3, 5, 7 (see �gure 8.5 on the fa
ingpage whi
h illustrates the geometry of the plane 
urve Sy):Conje
ture 8.8. For any odd d ≥ 3, there exists a surfa
e S of degree d with
1
8 ·

(
3d3 − 4d2 − 7d + 8

) nodes with the following geometri
 properties:(1) S has dihedral symmetry Dd and is 
onstru
ted based on Rohn's idea (se
-tion 1.3): S = P − (z + a0w) · (S d−1

2

)2, where P is a produ
t of d planes
P = Πd−1

j=0

[
cos

(
2πj

d

)
x + sin

(
2πj

d

)
y − z

]and S d−1

2

is a surfa
e of degree d−1
2 .(2) The plane 
urve Sy := S∩{y = 0} fa
tors into a line and a 
urve of degree

d − 1: Sy = Sy,1 · Sy,d−1.(3) Sy has d−1
2 +

(
d−1
2

)2
+ 1

2
d−1
2

(
d−1
2 − 1

) nodes.(4) Exa
tly one of the nodes of Sy, say R, lies on the rotation axes {x = y = 0}of the dihedral operation. In fa
t, R is the interse
tion of the line Sy,1 withthe rotation axes {x = y = 0}.(5) The generi
 surfa
e from Rohn's 
onstru
tion has nodes at the interse
tionof the (
d
2

)
= d ·

(
d−1
2

) interse
tion lines of the d planes de�ned by P withthe surfa
e S d−1

2

of degree d−1
2 . Be
ause of the dihedral symmetry of the
onstru
tion 1

d · d ·
(

d−1
2

)2 of the nodes of the plane septi
 Sy 
ome fromthis general 
onstru
tion.For d ≤ 11, the number of nodes 
onje
tured above ex
eeds Chmutov's lowerbound for the maximum number of nodes on a surfa
e of degree d (se
tion 4.1). Butfor d ≥ 13, Chmutov's examples have more nodes. Thus, if the 
onje
ture 
annotbe improved then it does only yield very few new lower bounds: µA1
(9) ≥ 226 and

µA1
(11) ≥ 430.
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The {y = 0} plane se
tion of the a�ne 
hart w = 1 of a 226-nodal noni
 over F61.It 
an be found and lifted to 
hara
teristi
 zero using an algorithm for lo
atinginteresting examples within families of algebrai
 varieties.



CHAPTER 9Lo
ating Interesting Examples within FamiliesSuppose we have a k-parameter family of algebrai
 varieties Va1,a2,...,ak
de�nedover some algebrai
 extension K := Q(α) of Q in whi
h we hope to exist a parti
u-larly interesting example.Suppose furthermore that there exists an algorithm whi
h allows us to dete
tusing 
omputer algebra if a variety Va1,a2,...,ak

is interesting for given values of theparameters a1, a2, . . . , ak. Then the algorithm whi
h we des
ribe in this 
hapter andwhi
h we implemented as the Singular [GPS01℄ library sear
hInFamilies.liballows us to lo
ate these examples in many 
ases.As we have seen in the pre
eding 
hapters, all surfa
es of degree d ≤ 8 withthe greatest known number of nodes 
an be 
onstru
ted by lo
ating them withinfamilies with dihedral symmetry. Furthermore, we have already seen that for a givensurfa
e it is easy to 
ompute its number of nodes using 
omputer algebra. Thus,the problem of �nding surfa
es with many nodes is exa
tly of the type des
ribed inthe previous paragraph.And indeed, we will see in the following se
tions that the 
onstru
tion of allknown surfa
es of degree d ≤ 7 whi
h lead to the best known lower bounds for themaximum number µA1
(d) of nodes 
an be redu
ed to a 
omputer algebra 
al
ulation.Moreover, we apply the method to the 
ase of degree d = 9 whi
h leads to a newlower bound:(9.1) µA1

(9) ≥ 226.Re
all that we have seen in the �rst part of this Ph.D. thesis and in 
hapter 8 thatthe restri
tions on µA1
(d) known before the present 
hapter are as follows:degree 2 3 4 5 6 7 8 9 10 11 12 d

µA1
(d) ≥ 1 4 16 31 65 99 168 216 345 425 600 5

12d3

µA1
(d) ≤ 1 4 16 31 65 104 174 246 360 480 645 4

9d3Thus, in degree d = 9 there remains a gap of 20 nodes between our 
onstru
tionwhi
h leads to 226 nodes and the best known upper bound 246.9.1. Some Introdu
tory ExamplesIn the previous 
hapter, we used the geometry of the prime �eld examples toobtain a 
onje
ture for some restri
tions on the parameters. We 
ould then verifythem by simply 
omputing the number of nodes of the resulting surfa
e.The pro
ess of �guring out the needed geometri
 properties of the prime �eldexamples involved 
reative human intera
tion. Here, we use a purely arithmeti
 wayto lift the prime �eld examples whi
h 
an be performed automati
ally. Nevertheless,geometri
 insight 
an speed up the algorithm signi�
antly.107



108 9. LOCATING INTERESTING EXAMPLES WITHIN FAMILIES�eld β µ(vS1:β)

F2 � �
F3 � �
F5 1 205
F5 −1 205

F7 1 130

F11 1 130

F13 1 130

F17 1 130Table 9.1. Examples of vS(1:β) over some prime �elds whi
h haveat least 130 ordinary double points.The examples whi
h we present in this se
tion illustrate the basi
 ideas behindour method.9.1.1. Van Straten's 130-nodal Quinti
 in P4. Let us look for exampleswith many isolated singularities within van Straten's two-parameter family (seese
tion 4.3 on page 48)vS(α:β) := α·σ5(x0, . . . , x5) + β·σ2(x0, . . . , x5)·σ3(x0, . . . , x5)of hypersurfa
es of degree 5 in the P4 
ut out by x5 = −(x1 + x2 + · · · + x4). It is
lear that the 
orresponding hypersurfa
e has a non-isolated singularity if α = 0,so let us normalize to α := 1. This leaves us with a one-parameter family vS(1:β).Running through all possible parameters β over the prime �elds F2,F3, . . . ,F19,we �nd the examples with at least 130 ordinary double points listed in table 9.1.The whole 
omputation takes approximately two minutes on our 
omputer.From this table, it is easy to guess that vS(1:1) is indeed a 130-nodal quinti
in P4 in 
hara
teristi
 zero. This guess 
an now be veri�ed, again using 
omputeralgebra. Noti
e that the redu
tion modulo �ve gives a 205-nodal quinti
 in P4 whi
h
annot exist in 
hara
teristi
 zero be
ause of Var
henko's upper bound whi
h is 135nodes (see se
tion 3.7).9.1.2. Barth's 65-nodal Sexti
 in P3. Let us 
ompute the parameters forwhi
h Barth's one-parameter family of 45-nodal sexti
s Fα = P − α·Q2 has ex-a
tly 65 nodes (see se
tion 4.5 on page 50). The Singular s
ript whi
h 
omputestable 9.2 on the next page only runs for a few se
onds.It is easy to guess from the table that α has to satisfy some quadrati
 
ondition.For ea
h prime for whi
h there exist exa
tly two solutions we 
ompute the moni
quadrati
 polynomial with the two values of α as roots. These moni
 quadrati
polynomials over the prime �elds are not di�
ult to lift by lifting ea
h 
oe�
ient tosome rational number. This 
an be done using Wang's rational re
overy algorithm[Wan81℄ or one of its variants (see e.g., [CE95℄, [Mon04℄):Algorithm 1 (Wang's algorithm).Input: A modulus M ∈ Z and a residue U ∈ Z/(M).



9.1. SOME INTRODUCTORY EXAMPLES 109�eld α polynomial µ(Fα)

F2 � � �
F3 � � �
F5 −2 α + 2 65

F7 � � �
F11 5, −4 α2 − α + 2 65

F13 � � �
F17 � � �

�eld α polynomial µ(Fα)

F19 3, −2 α2 − α − 6 65

F23 � � �
F29 5, −4 α2 − α + 9 65

F31 −1, 2 α2 − α − 2 65

F37 � � �
F41 −13, 14 α2 − α − 18 65

F43 � � �Table 9.2. Examples of Fα over some prime �elds whi
h have atleast 65 ordinary double points.Output: A pair (A, B) of integers s.t. A ≡ BU mod M and |A|, B <
√

1
2Mwith B > 0 if su
h a pair exists. Otherwise, return NIL.1 (A1, A2) := (M, U); (V1, V2) := (0, 1);2 loop3 if |V2| ≥

√
1
2M then return NIL;4 if A2 <

√
1
2M then return (sign(V2)A2, |V2|);5 Q := ⌊A1

A2
⌋; (A1, V1) := (A1, V1) − Q(A2, V2);6 swap(A1, A2); swap(V1, V2);Of 
ourse, Wang's algorithm only works �ne if the modulus M is big enough.Thus, in our situation we �rst have to use the 
hinese remainder theorem on allour prime �eld examples to be able to apply the rational re
overy algorithm. Thisimmediately yields:

α2 − α − 1

16
= 0.Again, it is easy to verify using 
omputer algebra that this is indeed the 
orre
tparameter.9.1.3. A Redu
ible Case. To illustrate a problem whi
h may o

ur be
auseof di�erent algebrai
 numbers we 
onsider the ideal I = ((x2− 1

2 )·(x2− 1
3 ), y− 1

7 ) ⊂
Q[x, y]. Table 9.3 on the following page lists all Fp-rational points of I (i.e. points of
I with 
oordinates in Fp) over some small prime �elds Fp. Of 
ourse, the existen
eof su
h points is related to the existen
e of square roots of two and three in these�elds.It may happen that the prime �eld experiments take too mu
h time, so that wedo not have enough primes p for whi
h the maximum number of Fp-rational pointsexists. E.g., in our example we found only one prime, namely 23, for whi
h all fourpoints are Fp-rational. Su
h a problem does not exist in the 
ase in whi
h we arein the 
omfortable position to be able to produ
e as many prime �eld examplesas we wish. These 
ases are not very di�
ult, in parti
ular if we already know inadvan
e whi
h primes have good redu
tion and whi
h not (see [ABKR00℄): takea redu
ed Groebner basis of the ideal de�ning the points and lift the 
oe�
ients



110 9. LOCATING INTERESTING EXAMPLES WITHIN FAMILIES
p 1√

2
1√
3

1
7 ideal #11 �, � 2, −2 −3 y + 3, xy + 3x + 2y − 5, x2 − 4 213 �, � 3, −3 2 y − 2, xy − 2x + 3y − 6, x2 + 4 217 3, −3 �, � 5 y − 5, xy − 5x + 3y + 2, x2 + 8 219 �, � �, � −8 1 023 9, −9 −10, 10 10 y − 10, xy − 10x− 10y + 8, x4 + 3x2 + 4 429 �, � �, � −4 1 031 4, −4 �, � 9 y − 9, xy − 9x + 4y − 5, x2 + 15 237 �, � −5, 5 16 y − 16, xy − 16x − 5y + 6, x2 + 12 241 12, −12 �, � 6 y − 6, xy − 6x − 12y − 10, x2 + 20 243 �, � �, � −6 1 0Table 9.3. For some prime �elds Fp we show all Fp-rational pointsof the ideal I =

(
(x2 − 1

2 )·(x2 − 1
3 ), y − 1

7

). The 
olumn �#� liststhe number of these points and the 
olumn �ideal� shows a redu
edGroebner basis of the ideal des
ribing them.using Wang's rational re
overy algorithm. But in our appli
ations, the bottle ne
kof the algorithm are the experiments and we usually 
annot produ
e many moreprime �eld examples in short time.To solve the problem we simply 
hoose only subsets of all primes whi
h leadto the se
ond most number of Fp-rational points. In our example, the maximumnumber of Fp-rational points is 4 and the se
ond most is 2. As 4
2 = 2, at least halfof the 
ases in whi
h there are exa
tly two Fp-rational points have to 
ome fromthe same fa
tor ((x2 − 1

2 ) or (x2 − 1
3 )) of the redu
ible polynomial of I.There are six primes, 11, 13, 17, 31, 37, 41, with exa
tly two Fp-rational points.Thus, for all (

6
6/2

)
=

(
6
3

)
= 20 
ombinations of three of these primes we try to lifttheir ideals in the same way as for the 65-nodal sexti
. E.g., for the set of primes

{11, 13, 37} Wang's rational re
overy algorithm already produ
es the guess x2 − 1
3 ,

y − 1
7 . This guess 
an then be veri�ed over the rational numbers using 
omputeralgebra. 9.2. The AlgorithmWe now des
ribe the algorithm in the general situation. All main ideas arealready 
ontained in the examples presented in the previous se
tion. The purposeof the algorithm 
an be formulated as follows:



9.2. THE ALGORITHM 111Algorithm 2. (sket
h)Input: • An ideal F ⊂ K[a1, . . . , ak, x0, x1, . . . , xn] where the ai are 
on-sidered as parameters. For 
on
rete values ai of the parameters ai,this yields an ideal Fa1,...,ak
⊂ K[x0, x1, . . . , xn].

• A pro
edure 
he
kInterest(ideal I) whi
h 
he
ks over �nite �elds
K = Fp, p prime, if a given ideal I := Fa1,...,ak

is interesting.
• A pro
edure 
he
kResult(ideal F, ideal 
ondsPars) whi
h 
he
ksin an algebrai
 extension of Q if a guessed solution is really interest-ing.
• Both pro
edures have to be 
ompatible in the obvious sense.Output: If an interesting variety exists: an ideal in K[a1, . . . , ak] de�ningparameters a1, a2, . . . , ak s.t. Fa1,a2,...,ak

is interesting in the sense de�nedby the spe
i�ed pro
edure.Remark 9.1. • For the algorithm to work as des
ribed below, we haveto assume that the set of solutions is zero-dimesional. But as we are onlyinterested in �nding one example, this is no real restri
tion.
• In our 
ases, I = Fa1,...,ak

⊂ K[x0, x1, . . . , xn] is just a single polyno-mial des
ibing a hypersurfa
e in Pn, and 
he
kInterest(ideal I) sim-ply veri�es that the number of singularities of this hypersurfa
e over a �nite�eld is high. The pro
edure 
he
kResult(ideal F, ideal 
ondsPars)is very similar, but it works in 
hara
teristi
 zero.
• We implemented a prototype version of this algorithm as a pre-version ofthe Singular [GPS01℄ library sear
hInFamilies.lib. It is availablefrom [Lab03a℄ together with some example �les related to this arti
le.Our algorithm 
onsists of several steps:Step 1: Prime Field Experiments. We run through all possible parameter
ombinations over some small prime �elds Fp1

,Fp2
, . . . ,Fpm

and use the pro
edure
he
kInterest to pi
k the interesting parameter ve
tors. These possible 
ombina-tions may be restri
ted by giving a list of 
onditions.If the original equation of the surfa
e is de�ned over some algebrai
 extension
K := Q(α) of Q then we simply add α to the list of parameters and add its minimalpolynomial to the list of 
onditions on the parameters.Example 9.1. In our appli
ation, the prodedu
e 
he
kInterest will simply
ompute the number of singularities of the given surfa
e and return true if it is thenumber we have been looking for or false if not.Step 2: The Ideals over the Prime Fields. For ea
h prime p ∈ {p1, . . . , pm}we view the interesting parameter ve
tors as points in the parameter spa
e and
ompute the ideal Ip des
ribing all points by interse
ting the point ideals. Wethen 
ompute a redu
ed Groebner basis of the Ip to make the o

urring monomialsunique.In order to be able to lift the ideals to 
hara
teristi
 zero we �rst have to �gureout whi
h of the modular ideals 
ome from the same ideal in 
hara
teristi
 zero. Todo this, we sort the ideals Ipi

�rst w.r.t. the number of interesting parameter pointsthey de�ne and se
ond w.r.t. the monomials whi
h o

ur in the ideal. We pi
k theset SI with the greatest number of prime �eld ideals with the same monomials.



112 9. LOCATING INTERESTING EXAMPLES WITHIN FAMILIESStep 3: Lifting the Ideal. Then we lift ea
h 
oe�
ient o

urring in theredu
ed Groebner basis of the ideals in SI using Wang's rational re
overy algorithm.As indi
ated in the example of se
tion 9.1.3 on page 109 this might lead to someproblems and require some more 
omputations if di�erent algebrai
 numbers areinvolved. Su
h a situation 
an only o

ur if the variety in the parameter spa
e isredu
ible.If all the 
oe�
ients o

urring in the ideal 
an be lifted to 
hara
teristi
 zerothen we pro
eed with the next step.If not then we go ba
k to the �rst step and perform some new experiments. Ifwe have already obtained partial results then we may use these in order to speedup the 
omputations.Step 4: Che
king the Guess. Using the pro
edure 
he
kInterest againwe now verify the guess whi
h the lifting pro
ess has produ
ed. If it is not yet the
orre
t one then we go ba
k to the �rst step and perform some more experiments.9.3. Dihedral-symmetri
 Surfa
es of Degree d ≤ 6 with Many NodesAs indi
ated in the introdu
tion to this 
hapter, the algorithm des
ribed in theprevious se
tions redu
es the 
onstru
tion of surfa
es of degree d ≤ 6 in P3 whi
hhave the maximum possible number of nodes to a triviality on
e we had the idea tolook for dihedral-symmetri
 examples:Implementing a pro
edure 
he
kInterest(ideal I) whi
h 
he
ks if the sur-fa
e given by I has the 
orre
t number of nodes is easy. Then it only remains towrite down the Dd-symmetri
 (resp. Dd−1-symmetri
) families of surfa
es based onRohn's 
onstru
tion (see se
tion 1.3).For the 
on
rete results we do not use any further geometri
 intuition, althoughthis might lead to mu
h ni
er results: In this se
tion, we are only interested in aproof of 
on
ept, i.e. in showing that our algorithm produ
es the 
orre
t resultseven if we apply it in a very naive way. The 
omputations were performed on a 1MHz Mobile Centrino Laptop with 512 MB memory. In all examples, almost all thetime was used for the experiments. Although the equations are easy to 
ompute,we 
opied most of them together with the proje
tivities from [End96℄.9.3.1. A D3-symmetri
 4-nodal Cubi
. In degree d = 3, the family ofdihedral-symmetri
 surfa
es based on Rohn's 
onstru
tion is
fa1,a2

3 := p − qa1,a2 ,where
p := x3 − 3xy2 + 3x2w + 3y2w − 4w3,

qa1,a2 := a1·(z − a2w))·z2.As we are only interested in proje
tively di�erent surfa
es, we may 
hoose a2 := 1be
ause fa1,a2

3 (x, y, λz, w) = f
a1λ3,

a2
λ

3 (x, y, z, w) ∀ λ ∈ C∗ (see [End96, p. 22℄).This leaves us with a one-parameter family fa1,1
3 of three-nodal 
ubi
s.It su�
es to perform the experiments for all primes p ∈ {5, 7, 11, . . . , 29}. Thewhole algorithm runs two se
onds, in
luding experiments, lifting and veri�
ation ofthe result in 
hara
teristi
 zero. It �nds the 4-nodal 
ubi
 f

27
4

,1
3 .



9.3. DIHEDRAL-SYMMETRIC SURFACES OF DEGREE d ≤ 6 WITH MANY NODES 1139.3.2. A D3-symmetri
 16-nodal Kummer Quarti
. In degree d = 4, thefamily is
fa1,a2,a3,a4

4 := p − qa1,a2,a3,a4 ,where
p :=

1

4
·z·

(
x3 − 3xy2 + 3x2w + 3y2w − 4w3

)
,

qa1,a2,a3,a4 :=
(
a1(x

2 + y2) + a2z
2 + a3zw + a4w

2
)2

.Again, we are only interested in proje
tively di�erent surfa
es. Thus, be
ause of
fa1,a2,a3,a4

4 (x, y, λ2z, w) = λ2f
a1
λ

,λ3a2,λa3,
a4
λ

4 (x, y, z, w) ∀ λ ∈ C∗ we may 
hoose
a1 = 1. In order to obtain only �nitely many solutions we 
hoose furthermore
a4 := 1. This leaves us with a two-parameter family f1,a2,a3,1

4 of 12-nodal quarti
s.It su�
es to perform the experiments for all primes p ∈ {5, 7, 11, . . . , 29}. Thewhole algorithm runs nine se
onds, in
luding experiments, lifting and veri�
ationof the result in 
hara
teristi
 zero. It �nds the 16-nodal quarti
 f
1,( 5

4 )
3
, −5

32
,1

4 .9.3.3. A D5-symmetri
 31-nodal Togliatti Quinti
. In degree d = 5, thefamily is
fa1,a2,a3,a4,a5

5 := p − qa1,a2,a3,a4,a5 ,where
p := x5 − 5(x4 + y4)w − 10x2y2(x + w) + 20(x2 + y2)w3 + 5xy4 − 16w5,

qa1,...,a5 := a1·z·
(
a2(x

2 + y2) + a3z
2 + a4zw + a5w

2
)2

.Again, we may 
hoose a2 := 1, a4 := 1. This leaves us with a three-parameterfamily fa1,1,a3,1,a5

5 of 20-nodal quinti
s.It su�
es to perform the experiments for all primes p ∈ {11, 13, 17, . . . , 31}. Thewhole algorithm runs six minutes, in
luding experiments, lifting and veri�
ation ofthe result in 
hara
teristi
 zero. It �nds the 31-nodal quinti
 fa1,1,a3,1,a5

5 where the
ai are given by the ideal (2a1 + 5, 20a3 + a5 + 6, a2

5 + 2a5 − 4).9.3.4. A D5-symmetri
 65-nodal Sexti
. In degree d = 6, we take the
D5-symmetri
 family

fa1,a2,a3,a4,a5,a6

6 := p − qa1,a2,a3,a4,a5,a6 ,where
p := w·

(
x5 − 5(x4 + y4)w − 10x2y2(x + w) + 20(x2 + y2)w3 + 5xy4 − 16w5

)
,

qa1,...,a6 := a1·
(
(z − a2w)·(a3(x

2 + y2) + a4z
2 + a5zw + a6w

2)
)2

.In order to obtain only �nitely many solutions and as we are only interested inproje
tively equivalent surfa
es we may 
hoose a3 := 1, a4 := −1, a5 = 0. Thisleaves us with a three-parameter family fa1,a2,1,−1,0,a6

6 of 45-nodal sexti
s.It su�
es to perform the experiments for all primes p ∈ {7, 11, 13, . . . , 39}. Thewhole algorithm runs 22 minutes, in
luding experiments, lifting and veri�
ation ofthe result in 
hara
teristi
 zero. It �nds the 65-nodal sexti
 f
−5

16
,0,1,−1,0,4

6 .



114 9. LOCATING INTERESTING EXAMPLES WITHIN FAMILIES9.4. Another D7-symmetri
 Septi
 with 99 NodesWithout using any 
reative ideas, but just by following our algorithm, we wishto re
over the result µA1
(7) ≥ 99 whi
h we found in 
hapter 8 on page 95. We startagain with the 7-parameter family of all D7-symmetri
 septi
s

fa1,a2,...,a7

7 := p − qa1,...,a7 ,where
p := 26 · Π6

j=0

[
cos

(
2πj

7

)
x + sin

(
2πj

7

)
y − z

]

= x·
[
x6 − 3·7·x4y2 + 5·7·x2y4 − 7·y6

]

+7·z·
[(

x2 + y2
)3 − 23·z2·

(
x2 + y2

)2
+ 24·z4·

(
x2 + y2

)]
− 26·z7,

qa1,...,a7 := (z + a5w)
(
a1z

3 + a2z
2w + a3zw2 + a4w

3 + (a6z + a7w)(x2 + y2)
)2

.Although we may 
hoose a7 := 1, these are too many parameters to performa prime �eld sear
h over the whole family in short time. So, we have to imposesome additional 
onditions. Either by looking at the examples in smaller degree orby 
he
king the geometry of some experiments over very small prime �elds, it isnatural to expe
t that there should exist a 99-nodal septi
 S s.t. the plane 
urve
S|y=0 fa
tors into a line Sy,1 and a sexti
 Sy,6 with the property that Sy,1 passesthrough three of the generi
 singularities of the 
onstru
tion (see se
tion 8.3 onpage 97).From some prime experiments we see immediately that there is in fa
t a one-parameter family of su
h 99-nodal surfa
es. Thus we may speed up our sear
h byrequiring the line Sy,1 to be a spe
ial one: Sy,1 = x + c. This su�
es to produ
e a
99-nodal septi
 surfa
e using our algorithm as we will see below.9.4.1. Computing the 
onditions. It is easy to translate the restri
tionsabove into algebra (in the following, we use the a�ne 
hart w = 1):(1) The plane 
urve S|y=0 ∈ Q[x, z] is zero on the whole line Sy,1 = x + c,i.e. (S|y=0)|x=−c ≡ 0. As (S|y=0)|x=−c is a polynomial of degree 7 in onevariable z this gives 7+1 
onditions on the parameters a1, . . . , a7 be
auseea
h of the 
oe�
ients has to vanish.(2) The generi
 singularities are given by the interse
tion of the doubled 
ubi


C|y=0 and the three lines L1L2L3|y=0 (i.e., this is also a 
ubi
 plane 
urve).The fa
t that the line Sy,1 = x + c passes through three of these generi
singularities 
an be translated by simply substituting x by −c in the two
ubi
s. When dividing ea
h of the two 
ubi
 polynomials (C|y=0)|x=−c ∈
Q[z] and (L1L2L3|y=0)|x=−c ∈ Q[z] by its leading 
oe�
ient we get twopolynomials in one variable whi
h should be equal. Thus, we get three
onditions on the parameters a1, . . . , a7.By taking all these 
onditions in one ideal Iconds we see that we are left withessentially two unknown parameters be
ause the dimension of Iconds 
an easilybe 
omputed to be two. It turns out that we 
an ideed express all parameters asfun
tions of two of them, namely c and a6, by 
omputing a lexi
ographi
al Groebner



9.5. A D9-SYMMETRIC NONIC WITH 226 NODES 115basis of Iconds:
a2
1 = −64, a2 = −1

2
a1c, a3 = −a6c

2 − 1

2
a1c

2,

a4 = −1

8
a1c

3 − c2, a5 = c, a7 = 1.9.4.2. Experimental Result. When performing our algorithm on this two-parameter family we �nd after 10 minutes:
c2 = −

(
1

7

)2

, a6 = 0.This simpli�es the expressions for the other parameters:
a1 = 56c, a2 =

4

7
, a3 =

4c

7
, a4 =

(
2

7

)3

, a5 = c, a6 = 0, a7 = 1We denote the ideal de�ning these parameters by Isol.9.4.3. Veri�
ation.Theorem 9.2. The surfa
e Sa1,...,a7
of degree 7 has exa
tly 99 nodes and noother singularities if the ai ∈ Q(c) are as spe
i�ed by the ideal Isol in se
tion 9.4.2.Proof. By 
omputer algebra. In order not to have to 
ompute in an extensionof Q (whi
h is usually quite time-
onsuming), we �rst noti
e that Isol de�nes exa
tlytwo points in the parameter spa
e. Thus, dividing the multipli
ity of the singularlo
us of the surfa
e S := Sa1,...,a7

by two gives its total milnor number. Thefollowing sequen
e of Singular 
ommands 
omputes this:ideal sl = diff(S,x),diff(S,y),diff(S,z),diff(S,w);I_sol = groebner(I_sol);sl = redu
e(sl, I_sol);"milnor:", (mult(std(sl)) div mult(I_sol));In a similar way, we 
an verify that these 99 singularities are indeed isolated pointsand moreover have multipli
ity one, i.e. they are all nodes. �9.5. A D9-symmetri
 Noni
 with 226 NodesIn exa
tly the same way as we 
onstru
ted the 99-nodal septi
 in se
tion 9.4on the pre
eding page, we 
an pro
eed to �nd a noni
 with many nodes. We startwith the family fa0,...,a9

9 := p − qa0,...,a9 , where
p := 26 · Π8

j=0

[
cos

(
2πj

9

)
x + sin

(
2πj

9

)
y − z

]

= x9 − 36x7y2 + 126x5y4 − 84x3y6 + 9xy8 − 9x8z − 36x6y2z − 54x4y4z

− 36x2y6z − 9y8z + 120x6z3 + 360x4y2z3 + 360x2y4z3 + 120y6z3

− 432x4z5 − 864x2y2z5 − 432y4z5 + 576x2z7 + 576y2z7 − 256z9,

qa0,...,a9 := (z + a0w) ·
(
a1z

4 + a2z
3w + a3z

2w2 + a4zw3 + a5w
4

+(a6z
2 + a7zw + a8w

2)(x2 + y2) + a9(x
2 + y2)2

)2
.We may 
hoose a5 := 1. After the use of the same geometri
al assumptionsas in the 
ase of the 99-nodal septi
 in the pre
eding se
tion, we are left with a



116 9. LOCATING INTERESTING EXAMPLES WITHIN FAMILIESfour-parameter family. For this family the experiments take quite a lot of time,so we try to guess another parameter. It turns out that the maximum number ofnodes whi
h we �nd in F13 using our algorithm is 226. From these experiments weguess that there are 226-nodal noni
s for a3 = 0 (similar to the result a6 = 0 forthe 99-nodal septi
). This redu
es our problem to a sear
h over a three-parameterfamily. Nevertheless, the experiments take several hours. Finally, we get:Theorem 9.3. The eight surfa
es S226 := fa0,...,a9

9 of degree 9 with
a2
1 = −256, a2

8 = −9a1

8
, c4 =

a1

128
, a0 = c a2 = −a1c

2
,

a3 = 0, a6 = −3a1

4
, a4 =

1

c
a7 =

a1c

4
+

1

c3
, a9 =

21a1

16and a8 = 3
2c2 have exa
tly 226 nodes and no other singularities.Proof. By 
omputer algebra. See proof of theorem 9.2. �The previously known maximum number of nodes on a noni
 was 216, attainedby the surfa
e of degree 9 from Chmutov's series (se
tion 4.1 on page 45). We nowhave:Corollary 9.4.

µA1
(9) ≥ 226.Of 
ourse, in view of the fa
t that the 99 nodes even exist over the real numbersit is natural to ask for the existen
e of a noni
 with 226 real nodes. In analogy to
hapter 8 on page 95 we 
an write down a promissing family, but it has one moreparameter and we did not have enough time to perform the 
omputation yet.Noti
e that our 226-nodal noni
 has one additional node on the rotation axes

{x = y = 0} in F29. This is similar to the 
ase of septi
s where there exists oneadditional node on the rotation axes in F5.9.6. Dis
ussionUnfortunately, we 
annot predi
t a priori how long the algorithm will run for agiven family, but it is 
lear that it has to terminate some time if we negle
t hardwareand software restri
tions. It neither gives a proof of the non-existen
e of exampleswhi
h had not been found. Nevertheless, our algorithm has several advantages:
• The algorithm is highly parallelizable. Indeed, the bottle ne
k of themethod are the prime �eld experiments, and it is easy to distribute theseexperiments over several ma
hines.
• It produ
es partial results whi
h 
an be used as guesses to speed up the
omputations signi�
antly.Our method has 
ertainly many appli
ations in other areas of algebrai
 geom-etry. We only mention a few 
ases 
onne
ted to singularities in whi
h it might beuseful:
• Dihedral-symmetri
 surfa
es of degree d = 11, 13, . . . with many nodes.
• Dihedral-symmetri
 surfa
es with non-maximal numbers of nodes; e.g., itis not 
lear whi
h numbers of nodes may o

ur on o
ti
s (see se
tion 3.13on page 43 on the defe
t).
• (Real) line arrangements of degree 9, 11, . . . with many 
riti
al points ontwo levels (see 
hapter 6 on page 79).
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• Surfa
es with many 
usps, in parti
ular quinti
s be
ause the gap betweenthe maximum known 15 and the best known upper bound 20 is very large(see se
tion 4.11 and 
hapter 5).



Barth's i
osahedral-symmetri
 65-nodal sexti
. Shortly after its dis
overy in 1996,Ja�e and Ruberman showed that 65 is indeed the maximum possible number ofnodes on a sexti
 surfa
e in P3.



CHAPTER 10Tables Showing the Current State of KnowledgeThis 
hapter gives a tabular overview on the 
urrent state of knowledge onthe subje
t of hypersurfa
es with many singularities. In all tables, bold numbersindi
ate the 
ases in whi
h the present thesis improves the previously best knownbounds.At some pla
es, there appear question marks. These are sometimes 
aused byrunning time restri
tions be
ause the 
omputation of the dimension of the tangentspa
e of the deformation fun
tor of the nodal hypersurfa
es 
an take a lot of time.Another reason might be that we have simply not yet implemented the equationof the hypersurfa
e in Singular. Sometimes, this task is not trivial or at least ahuge amount of work be
ause some 
onstru
tions are only given by vague or lengthyarguments. In some 
ases (e.g. Kreiss's 
onstru
tion, se
tion 2.6 on page 26), it iseven not 
lear if the 
onstru
tion really works.On
e we have 
omputed more numbers, we will pla
e updated tables on ourwebpage [Lab03a℄. 10.1. Nodal Hypersurfa
esIn P3 and P4, the best known 
onstru
tions for large degree d are still givenby Chmutov's 
onstru
tion from 1992, see se
tion 4.1. For n ≥ 5 and large d, thebest known 
onstru
tion is our variant of Chmutov's 
onstru
tion based on Breske'sfolding polynomials asso
iated to the root system B2, see se
tion 5.6.1.In the following tables, we give an overview on the 
urrently best known boundsfor the maximum number of nodes for small n or d. The tables do not only show thenames of the persons who dis
overed the hypersurfa
es. We also give the referen
esto the se
tions of this Ph.D. thesis in whi
h we introdu
ed the hypersurfa
e and theyear in whi
h it was dis
overed.Furthermore, we give the dimensions of the spa
e of in�nitesimal deformationsand the obstru
tion spa
e of van Straten's deformation fun
tor Def(X, Σ) (see se
-tion 4.6 on page 51). For shortness, we write ti for dimT 1(X, Σ(X)), i = 1, 2,throughout.10.1.1. Nodal Surfa
es in P3. We start with the most important table:Nodal hypersurfa
es in P3, table 10.1 on the following page. As explained in thehistori
al part of this work, this subje
t has a very long and ri
h history. The twobold numbers, 99 and 226, indi
ate the 
ases in whi
h the present thesis improvesthe previously known bounds.
119



120 10. TABLES SHOWING THE CURRENT STATE OF KNOWLEDGE
d µ3

A1
(d) ≤ # name, se
tion, and year t1 t23 4, S
hlä�i: 3 Chmutov: s. 4.1, 1992 1 0s. 1.1.1, 1863 4 S
hlä�i: s. 1.1.1, 1863 0 04 16, Kummer: 14 Chmutov: s. 4.1, 1992 5 0s. 1.2, 1864 16 Fresnel, Kummer: s. 1.2, 1819/64 3 05 31, Beauville: 28 Chmutov: s. 4.1, 1992 12 0s. 3.3, 1979 31 Togliatti: s. 2.1, 1940 9 06 65, Ja�e/Ruberman: 57 Chmutov: s. 4.1, 1992 11 0s. 4.5, 1997 63 Gallarati: s. 2.5, 1952 5 064 Stagnaro: s. 3.1.2, 1978 ? ?64 Catanese-Ceresa: s. 3.5, 1982 4 065 Barth: s. 4.5, 1996 3 07 104, Var
henko: 81 Chmutov: s. 3.8, 1982 23 0s. 3.7, 1983 93 Chmutov: s. 4.1, 1992 11 099 L.: s. 8.6, 2004 5 08 174, Miyaoka: 128 Endraÿ: s. 4.7, 1996 28 7s. 3.10, 1984 153 B. Segre: s. 2.4, 1952 ? ?154 Chmutov: s. 4.1, 1992 5 10160 Gallarati: s. 2.5, 1952 6 17160 Kreiss: s. 2.6, 1955 ? ?165 van Straten: unpublished, 1997 1 17168 Endraÿ: s. 4.7, 1996 0 199 246, Var
henko: 192 Chmutov: s. 3.8, 1982 23 11s. 3.7, 1983 216 Chmutov: s. 4.1, 1992 7 19226 L.: s. 9.5, 2005 ? ?10 360, Miyaoka: 321 Chmutov: s. 4.1, 1992 2 53s. 3.10, 1984 325 Kreiss: s. 2.6, 1955 ? ?345 Barth: s. 4.5, 1996 0 7511 480, Var
henko: 425 Chmutov: s. 4.1, 1992 3 80s. 3.7, 1983 430 ? L.(
onje
ture): s. 8.8, 2004 ? ?12 645, Miyaoka: 576 Kreiss: s. 2.6, 1955 ? ?s. 3.10, 1984 576 Chmutov: s. 4.1, 1992 2 139600 Sarti: s. 4.9, 2001 0 16113 829, Var
henko: 729 ? L.(
onje
ture): s. 8.8, 2004 ? ?s. 3.7, 1983 732 Chmutov: s. 4.1, 1992 ? ?14 1051, Miyaoka: 931 Kreiss: s. 2.6, 1955 ? ?s. 3.10, 1984 949 Chmutov: s. 4.1, 1992 ? ?

d ≈ 4/9d3, Miyaoka: ≈ 5
12d3 Chmutov: s. 4.1, 1992 ? ?s. 3.10, 1984Table 10.1. Nodal Hypersurfa
es in P3



10.1. NODAL HYPERSURFACES 12110.1.2. Surfa
es in P3 with Many Real Nodes. Ex
ept for d = 9, the
urrently known bounds for the maximum number µA1
(d) (resp. µR

A1
(d)) of nodeson a surfa
e of degree d in P3(C) (resp. P3(R)) are equal. The upper bounds arethe same as the 
omplex ones listed in the previous table: Var
henko's (se
tion 3.7)and Miyaoka's (se
tion 3.10).

d 1 2 3 4 5 6 7 8 9 10 11 12 13 d

µR

A1
(d) ≤ 0 1 4 16 31 65 104 174 246 360 480 645 832 4

9d(d − 1)2

µR

A1
(d) ≥ 0 1 4 16 31 65 99 168 216 345 425 600 732 ≈ 5

12d3Table 10.2. The 
urrently best known bounds on the maximumnumber of real nodes.10.1.3. Nodal Hypersurfa
es in P4. Not many people have worked onnodal hypersurfa
es in P4 of large degree. To our knowledge, the general 
onstru
-tions des
ribed in the histori
al part of this thesis are the only available results for
d ≥ 6. Therefore, table 10.3 is quite short.For d = 6, 7, 8, it would 
ertainly be possible to apply 
onstru
tions similar tothe one of van Straten's 130-nodal quinti
, e.g. by using our algorithm from 
hapter9.

d µ4
A1

(d) ≤ # name, ref., and year t1 t23 10 10 Segre: s. 1.5.1, 1887 0 04 45 41 Chmutov: s. 4.1, 1992 4 045 Burkardt: s. 1.5.2, 1891 0 045 Goryunov: s. 4.4, 1994 0 05 135 120 Chmutov: s. 4.1, 1992 1 20125 S
hön: s. 3.12, 1986 0 24126 Hirzebru
h: s. 3.12, 1987 0 25130 van Straten: s. 4.3, 1993 0 296 320 277 Chmutov: s. 4.1, 1992 0 927 651 566 Chmutov: s. 4.1, 1992 ? ?8 1190 1029 Chmutov: s. 4.1, 1992 ? ?9 2010 1720 Chmutov: s. 4.1, 1992 ? ?10 3195 2745 Chmutov: s. 4.1, 1992 ? ?
d ? 7

18d4 Chmutov: s. 4.1, 1992 ? ?Table 10.3. Nodal Hypersurfa
es in P4. The upper bounds aregiven by Var
henko's spe
tral bound (se
tion 3.7).



122 10. TABLES SHOWING THE CURRENT STATE OF KNOWLEDGE10.1.4. Nodal Hypersurfa
es in P5. For nodal hypersurfa
es in P5 thesituation is similar to the one in P4: there are very few (or even no) results for
d ≥ 6. But as our variants of Chmutov's 
onstru
tion lead to new lower bounds,table 10.4 shows three of these variants.Note that although our 
onstru
tion leads to a new lower bound it does notimprove the highest order term 5

16d5 of the polynomial des
ribing the number ofnodes. Thus, this number in the bottom row of the table is not marked in bold.But as one 
an see from the table, our 
onstru
tion improves the previously knownlower bounds quite a bit in small degree.
d µ5

A1
(d) ≤ # name, ref., and year t1 t23 15 15 Veneroni: s. 1.5.3, 1914 5 015 Togliatti: s. 2.1, 1936 5 04 126 40 Chmutov: s. 3.8 50 080 Chmutov: s. 3.8 20 10104 Chmutov/L.: s. 4.1, 2005 ? ?120 Goryunov: s. 4.4, 1994 0 305 456 320 Chmutov: s. 3.8 15 119392 L.: s. 5.6.1, 2005 ? ?420 Hirzebru
h/L.: s. 3.12, 2005 ? ?6 1506 810 Chmutov: s. 3.8 25 4091035 Chmutov/L.: s. 4.1, 2005 ? ?1179 L.: s. 5.6.1, 2005 ? ?7 3431 2430 Chmutov: s. 3.8 ? ?2583 Chmutov/L.: s. 4.1, 2005 ? ?2781 L.: s. 5.6.1, 2005 ? ?8 7872 4320 Chmutov: s. 3.8 ? ?5488 Chmutov/L.: s. 4.1, 2005 ? ?6016 L.: s. 5.6.1, 2005 ? ?9 14412 10240 Chmutov: s. 3.8 ? ?10368 Chmutov/L.: s. 4.1, 2005 ? ?11328 L.: s. 5.6.1, 2005 ? ?10 27237 12500 Chmutov: s. 3.8 ? ?16000 Chmutov: s. 3.8 ? ?20525 L.: s. 5.6.1, 2005 ? ?

d ? 5
16d5 L.: s. 5.6.1, 2005 ? ?Table 10.4. Nodal Hypersurfa
es in P5. The upper bounds aregiven by Var
henko's spe
tral bound (se
tion 3.7).



10.1. NODAL HYPERSURFACES 12310.1.5. Nodal Cubi
 Hypersurfa
es in Pn. The nodal 
ubi
 hypersurfa
esare one of the very rare 
ases in whi
h µn
A1

(d) (and even µn(d)) is known.The �rst who showed this was Kalker in his Ph.D. thesis in 1986. As explainedin se
tion 3.11 on page 41, he simply wrote down equations whi
h realize the upperbound provided by Var
henko's spe
tral bound (se
tion 3.7). Later, Goryunovobtained the same number of nodes on 
ubi
s by a di�erent method (se
tion 4.4).
n µn

A1
(3) ≤ # name, se
tion, and year t1 t23 4 4 S
hlä�i: s. 1.1.1, 1863 0 04 10 10 Segre: s. 1.5.1, 1887 0 05 15 15 Veneroni: s. 1.5.3, 1914 5 015 Togliatti: s. 2.1, 1936 5 06 35 33 Givental: s. 3.9, ≈ 1982 2 035 Kalker: s. 3.11, 1986 0 035 Goryunov: s. 4.4, 1994 0 07 56 54 Givental: s. 3.9, ≈ 1982 2 056 Kalker: s. 3.11, 1986 0 056 Goryunov: s. 4.4, 1994 0 08 126 118 Givental: s. 3.9, ≈ 1982 0 34126 Kalker: s. 3.11, 1986 0 42126 Goryunov: s. 4.4, 1994 0 429 210 189 Givental: s. 3.9, ≈ 1982 3 72210 Kalker: s. 3.11, 1986 0 90210 Goryunov: s. 4.4, 1994 0 9010 462 414 Givental: s. 3.9, ≈ 1982 0 249462 Kalker: s. 3.11, 1986 0 297462 Goryunov: s. 4.4, 1994 0 297

n odd (
n+1

[(n+1)/2]

) (
n+1

[(n+1)/2]

) Kalker: s. 3.11, 1986 ? ?
n even (

n+1
[n/2]

) (
n+1
[n/2]

) Kalker: s. 3.11, 1986 ? ?Table 10.5. Cubi
s in Pn. The upper bounds are given byVar
henko's spe
tral bound, see se
tion 3.7 on page 35.



124 10. TABLES SHOWING THE CURRENT STATE OF KNOWLEDGE10.1.6. Nodal Quarti
 Hypersurfa
es in Pn. Although Goryunov (se
tion4.4) used the same method for 
onstru
ting his quarti
s as for his 
ubi
s, the quarti
sdo not rea
h Var
henko's upper bound (se
tion 3.7).Is Goryunov's 
onstru
tion already the best possible or is it possible to produ
emore nodes? It would be interesting to try to answer to this question, at leastfor small n. As table 10.6 shows, already for n = 5 there is a gap of 6 betweenGoryunov's lower bound and Var
henko's upper bound.
d µn

A1
(4) ≤ # name, se
tion, and year t1 t23 16 16 Fresnel, Kummer: s. 1.2, 1819/64 3 04 45 24 Chmutov: s. 3.8, 1982 0 045 Burkardt: s. 1.5.2, 1891 0 05 126 40 Chmutov: s. 3.8, 1982 50 080 Chmutov: s. 3.8, 1982 20 10104 L.: s. 5.6.1, 2005 ? ?120 Goryunov: s. 4.4, 1994 0 306 357 160 Chmutov: s. 3.8, 1982 36 35300 L.: s. 5.6.1, 2005 ? ?336 Goryunov: s. 4.4, 1994 0 1757 1016 280 Chmutov: s. 3.8, 1982 63 77560 Chmutov: s. 3.8, 1982 28 322804 L.: s. 5.6.1, 2005 ? ?896 Goryunov: s. 4.4, 1994 0 630938 Goryunov: s. 4.4, 1994 ? ?8 2907 1120 Chmutov: s. 3.8, 1982 36 7422337 L.: s. 5.6.1, 2005 ? ?2688 Goryunov: s. 4.4, 1994 0 2274

n ≈
√

3
2 · 3n+1

√
πn

22n/3
(

n+1
[2n/3]+1

) Goryunov: s. 4.4, 1994 ? ?Table 10.6. Quarti
s in Pn. The upper bounds are given byVar
henko's spe
tral bound, see se
tion 3.7 on page 35.



10.2. HIGHER SINGULARITIES 12510.2. Higher SingularitiesNot mu
h is known on the maximum number of higher singularities on hyper-surfa
es of degree d in Pn. Even in P3, there are only few results su
h as Barth'ssurfa
es with many 
usps (se
tion 4.11 on page 55).Our general 
onstru
tions from 
hapter 5 on page 67 improve most known lowerbounds for the maximum number of Aj-singularities on a hypersurfa
e of degree din Pn, n ≥ 3, signi�
antly.To our knowledge, there are almost no results for other singularities ex
eptvery general ones like those based on Viro's pat
hworking method (se
tion 4.12 onpage 57).10.2.1. Hypersurfa
es with Aj-Singularities in P3. The proje
tive three-spa
e is still the �eld of most a
tive resear
h in the subje
t of hypersurfa
es withmany singularities. Our results from 
hapter 5 on page 67 improve most previouslyknown bounds as table 10.7 shows.Note that even the 
ases of j ≥ 2, d ≥ 5 whi
h are not marked in bold have beenoverlooked for some time. These lower bounds 
ome from Gallarati's generalizationof B. Segre's 
onstru
tion whi
h we have been working out in se
tion 2.5 on page 24.
@

@j d 3 4 5 6 7 8 9 10 11 12 d

1 ��44 ��1616
��3131

��6565
��10499

��174168
��246226

��360345
��480425

��645600 ≈ ��4/95/12 · d3

2 ��33 ��88 ��2015
��3736

��6252
��9870

��144126
��202159

��275225
��363300 ≈ ��1/42/9 · d3

3 ��11 ��66 ��1310
��2615

��4431
��6964

��10272
��144114

��195140
��258198 ≈ ��8/4511/72 · d3

4 ��11 ��44 ��1110
��2015

��3521
��5432

��8054
��112100

��152110
��201132 ≈ ��5/367/60 · d3Table 10.7. Known upper and lower bounds for the maximumnumber µAj

(d) of singularities of type Aj , j = 1, 2, 3, 4, on a surfa
eof degree d in P3.



126 10. TABLES SHOWING THE CURRENT STATE OF KNOWLEDGE10.2.2. Hypersurfa
es in Pn with Aj-Singularities, j ≥ 2, n ≥ 4. Ourresults from 
hapter 5 on page 67 also improve most previously known boundsin higher dimensions. In the lower two rows, table 10.8 shows the asymptoti
behaviour of our two variants of the 
onstru
tion with many Aj-singularities: Oneuses Breske's folding polynomials asso
iated to the root system B2, the other usesthose asso
iated to the root system A2 whi
h Chmutov already used in the nodal
ase. Noti
e that for high degree d, Chmj,n(FB2

d ) is better than Chmj,n(FA2

d ) for
n ≥ 5 if j ≥ 2.

n 3 4 5 6 7 8

1
dn ·µn

A2
(d) ' 2

9
13
72

1
6

13
96

55
384

15
128

1
dn ·µn

A3
(d) ' 11

72
1
8

11
96

3
32

25
256

125
1536

1
dn ·µn

A4
(d) ' 7

60
23
240

7
80

23
320

19
256

1
16

1
dn ·µ(Chmj,n(FA2

d )) ≈ 3j+2

6j(j+1)
5j+3

12j(j+1)
7j+3

18j(j+1)
7j+4

24j(j+1)
19j+16

72j(j+1)
35j+19

144j(j+1)

1
dn ·µ(Chmj,n(FB2

d )) ≈ 2j+1
4j(j+1)

3j+2
8j(j+1)

3j+2

8j(j+1)
5j+3

16j(j+1)
20j+15

64j(j+1)
35j+20

128j(j+1)Table 10.8. The asymptoti
 behaviour of the number of Aj-singularities on a hypersurfa
e of degree d in Pn. Chmj,n(FB2

d )is better than Chmj,n(FA2

d ) for n ≥ 6.









Figure on the pre
eding pages: A 
ubi
 surfa
e (dark) with one A3-singularity andtwo nodes. The brighter surfa
e is its 
ovariant of degree 9 whi
h 
uts out itslines. See [LvS00℄ for more images and movies of 
ubi
 surfa
es.



Part 3Visualization





INTRODUCTION 133Introdu
tionIf a surfa
e with many singularities is de�ned over the reals then it is sometimesni
e to have an image of it. But this is not the only reason why one would like tohave good visualizations of singular surfa
es.In 
hapter 12 we show how to use our visualization tools Spi
y and surfex to
onstru
t good equations for all 45 topologi
al types of real 
ubi
 surfa
es with onlyrational double points. Furthermore, in many 
ases visualization is a very good toolto understand the geometry of some 
onstru
tions in an intuitive way. And this 
anhelp to 
onstru
t new intesting examples based on these known ones.Before that, we give a short overview of di�erent methods for visualizing alge-brai
 geometry ranging from 
lassi
al approa
hes to modern intera
tive 
omputersoftware.



The swallowtail. Our Singular library surfex.lib is able to visualize this famoussurfa
e 
orre
tly. It 
ontains a real 
urve whi
h is not 
ontained in the real two-dimensional part of the surfa
e.



CHAPTER 11Methods for Visualizing Algebrai
 Geometry11.1. Classi
al Approa
hesSin
e the early days of algebrai
 geometry, mathemati
ians visualize their ob-je
ts of study. Drawings by hand are easy for 
urves and surfa
es of degree d ≤ 2. Itis even not di�
ult to draw 
urves of higher degree when 
omputing many points andother important data like the 
oordinates of their singularities and in�exion points.Drawing images of 
ubi
 surfa
es is already mu
h more involved. Nevertheless, theliterature of the 19th 
entury 
ontains some very good visualizations. Some people(e.g., Clebs
h, Wiener, Rodenberg, and Klein) even produ
ed real-world models ofalgebrai
 surfa
es of low degree as we already mentioned in se
tion 1.1.3 on page 15.These were mostly made out of plaster or wood. Of 
ourse, the produ
tion of in-teresting surfa
es of higher degree (d ≥ 5) was almost impossible be
ause of their
omplexity. Models of algebrai
 surfa
es were even produ
ed and sold for high pri
es(see [S
h11℄). But from the 1930's on visualization of mathemati
s was frownedupon for many years.11.2. The First Visualization SoftwareVisualization entered ba
k into the world of algebrai
 geometry in the mid-1980's. E.g., Fis
her's book on mathemati
al models appeared at that time; in
onne
tion with this, some of the old plaster models were reprodu
ed.Shortly afterwards, the �rst software visualization tools have been developped.Until now the one that produ
es the best images of singular algebrai
 surfa
es isstill Endraÿ's surf [End01℄ the �rst version of whi
h he implemented during thewriting of his diploma thesis. surf is based on the raytra
ing method similar toPovRay. The latter is a mu
h more general program whi
h allows raytra
ing of anyreal-world s
ene. But besides the fa
t that we personally prefer the images produ
edby surf, Endraÿ's software has the advantage of being qui
ker. This is importantfor our appli
ation as we will see later. surf was even used to 
onstru
t a modelof the Clebs
h Diagonal Cubi
 at Fis
her's university at Düsseldorf whi
h is a fewmeters tall (see [Kae99℄): The 
onstru
tors used the software for drawing manyplane se
tions of the surfa
e whi
h served as the basis for the modelling pro
ess.Another promissing approa
h to the visualization of algebrai
 surfa
es is trian-gulation. In the smooth 
ase, it is not di�
ult to implement a good algorithm forthis purpose. In the singular 
ase, the best existing software is still Morris's softwareasurf from the LSMP pa
kage [Mor03℄ for whi
h he implemented a web-frontendusing JavaView (see [Pol01℄). His program is based on heuristi
s and does notprodu
e satisfa
tory results in many 
ases. To our knowledge, re
ent ideas on thetriangulation of singular surfa
es, e.g. by Mourrain's group in Ni
e, have not beenimplemented yet. 135



136 11. METHODS FOR VISUALIZING ALGEBRAIC GEOMETRYTogether with so-
alled 3d-printers the triangulation software allows the ma
hine-produ
tion of real-world models. To our knowledge, this te
hnique was �rst usedby mathemati
ians-s
ulpturs like Helaman Ferguson, Bathsheba Grossman, GeorgHart. Re
ently, the ar
hite
t Jonathan Chertok reprodu
ed the whole Rodenbergseries by this method based on the equations 
ommuni
ated to him by several math-emati
ians in
luding the author. In order to make the produ
tion of su
h modelseasier, we implemented an extension for surf based on Johannes Beigel's versionof the program whi
h uses the triangulation library gts. Unfortunately, this soft-are is not in a publishable state yet, but it already allowed us to produ
e severalexamples, e.g. the �rst model of a 30-
uspidal sexti
 surfa
e with the symmetry ofan i
osahedron and a reprodu
tion of a Clebs
h diagonal 
ubi
 (�g. 11.1).
Figure 11.1. A reprodu
tion of Clebs
h's diagonal 
ubi
 surfa
eusing a 3d-printer based on the data produ
ed using our extensionof surf. 11.3. Intera
tive SoftwareWith our intera
tive visualization software Spi
y and surfex we aim to go onestep further: The user 
an in
lude the 
oordinates of points of a plane geometry
onstru
tion into the equations of algebrai
 plane 
urves and surfa
es. If the userthen moves the points then the images of the algebrai
 varieties 
hange a

ord-ingly. This makes the intera
tive visualization of deformations and other pro
essespossible.11.3.1. Spi
y � Intera
tive Constru
tive and Algebrai
 Geometry.The 
ore of the 
omputer software Spi
y (up to now only available as a pre-versionfrom [Lab03b℄) is a 
onstru
tive geometry program designed both for visualizinggeometri
al fa
ts intera
tively on a 
omputer and for in
luding them in publi
ations.Its main features are:

• Conne
tion to external software like the 
omputer algebra system Sin-gular ([GPS01℄) and the visualization software Surf ([End01℄) whi
henables the user to in
lude algebrai
 
urves and surfa
es in dynami
 
on-stru
tions.
• Comfortable graphi
al user-interfa
e (
f. �g. 11.2) for intera
tive 
onstru
-tions using the 
omputer-mouse in
luding ma
ro-re
ording, animation,et
.
• High quality export to .fig-format (and in 
ombination with externalsoftware like Xfig or Fig2dev export to many other formats, like .eps,.pstex, et
.).



11.3. INTERACTIVE SOFTWARE 137We implemented the �rst parti
ular example of su
h a tool (
alled x
sprg,downloadable from [LvS00℄) during the writing of our diploma thesis under thedire
tion of D. van Straten. Van Straten had the idea that surf should be fastenough to be able to re
ompute two or three images of 
ubi
 surfa
es per se
ond.In this way, he wanted to be able to manipulate six points in the plane and see the
hanging surfa
es at the same time. This is exa
tly the purpose of x
sprg.After having re
eived my diploma I developped Spi
y as a mu
h more generaland powerful tool. Let us illustrate its usefulness again with the example of 
ubi
surfa
es:Example 11.1. We take three pairs of two points in the plane ea
h pair 
on-ne
ted by a straight line (see �g. 11.2). It is well-known that the blowup of the plane

Figure 11.2. A s
reen shot of the Spi
y user interfa
e showingthree lines, that meet in a point and the 
orresponding 
ubi
 sur-fa
e, whi
h 
ontains an E
kardt Point (3). Buttons 1 and 2 areused to draw the lines and the surfa
e, respe
tively.in the six points yields a smooth 
ubi
 surfa
e if neither three of the points are on a
ommon line nor six of them are on a 
ommon 
oni
. Furthermore, the blowup isbije
tive outside the six base points, and straight lines 
onne
ting the base points aremapped to straight lines on the 
ubi
 surfa
e. Thus, in order to 
onstru
t a 
ubi
surfa
e with an E
kardt point (i.e. a point in whi
h three lines meet) we only haveto manipulate the six base points until the three lines in the plane meet in a point(see [LvS03℄ for details).11.3.2. surfex � Intuitive Visualization, even in the Internet. We of-ten simply need a good and easy way to visualize one or more surfa
es and/or 
urveson them. Basi
ally, S
hmidt's new version 1.0.3 of Endraÿ's program surf 
an al-ready produ
e the required images, but it has some major de�
ien
ies 
on
erningthe usage. First, one needs to know surf's programming language. Se
ond, rota-tion within surf is far from intuitive. The purpose of our tool surfex [HLM05℄is exa
tly to �ll in this blank. Thus, surfex is basi
ally an easy-to-use frontendfor surf whi
h allows intuitive rotation, s
aling, and usage in general, even in theinternet. We demonstrate its usefulness at a 
on
rete example in the next 
hapter.11.3.3. surfex.lib � a Singular Interfa
e for surfex. The 
urrent ver-sion of surfex has the problem that it uses the raytra
er surf for visualizing



138 11. METHODS FOR VISUALIZING ALGEBRAIC GEOMETRYalgebrai
 surfa
es. And the raytra
ing te
hnique is not able to visualize real one-dimensional parts of a surfa
e su
h as the handle of the Whitney umbrella if it isnot spe
i�ed as the interse
tion of surfa
es.
Figure 11.3. surfex.lib 
an also visualize surfa
es with real
urves whi
h are not 
ontained in the real two-dimensional partof the surfa
e su
h as the swallowtail.In 
ombination with Singular, this problem 
an be solved. Singular 
an
ompute the singular lo
us of a given surfa
e and 
an then pass those surfa
eswhi
h 
ut out the singular 
urves to surfex. E.g., the following 
ode produ
es a
orre
t image of the swallowtail (see �g. 11.3):LIB "surfex.lib";ring r = 0,(x,y,z),dp;poly swallowtail = -4*y^2*z^3-16*x*z^4+27*y^4+144*x*y^2*z+128*x^2*z^2-256*x^3;plotRotated(swallowtail, list(x,y,z),2);





The four-nodal Cayley 
ubi
 and its nine lines. The fa
ts that a 
ubi
 
annot
ontain more than four singularities and that any four-nodal 
ubi
 
ontains exa
tlynine di�erent lines was already known to the geometers of the 19th 
entury.



CHAPTER 12Illustrating the Classi�
ationof Real Cubi
 Surfa
esIn this 
hapter we demonstrate the usefulness of our visualization tools Spi
yand surfex for working with algebrai
 surfa
es. Our example is the very 
lassi
alsubje
t of real 
ubi
 surfa
es. We will see that the use of our software does notonly allow us to visualize existing surfa
es, but also helps to produ
e equations ofsurfa
es (see also [LvS03℄, [HL05℄, [LvS00℄).In 1987, Knörrer and Miller [KM87℄ 
lassi�ed all real 
ubi
 surfa
es in P3 withrespe
t to their topologi
al type. Roughly, the authors say that two 
ubi
 surfa
eshave the same topologi
al type if they 
an be transformed 
ontinuously into ea
hother without 
hanging the shape. A similar 
lassi�
ation had already been given byS
hlä�i in the 19th 
entury [S
h63℄, but Knörrer and Miller obtained more pre
iseand more 
omplete results. Some of these are based on ideas of Bru
e and Wall[BW79℄ who gave a modern treatment of the 
omplex 
ase.Here, we restri
t ourselves to 
ubi
 surfa
es with only rational double pointswhi
h is the most interesting part of the 
lassi�
ation. We give an expli
it reala�ne equation for ea
h 
lass in their list (see table 12.2 on page 145). These allowus to draw images for ea
h 
lass showing all singularities and lines (see �g. 12.3,12.4, 12.5) using our software surfex [HLM05℄.In the already 
ited arti
le, S
hlä�i also gave equations for ea
h of his typesand des
ribed their 
onstru
tion in a very geometri
 way. In many 
ases, it is easyto �nd real a�ne equations from these with the help of our tool surfex. But in theother 
ases, there are too many free parameters and we have to use other methodssu
h as the deformation te
hniques des
ribed by Klein [Kle73℄.To perform these deformations expli
itly, it is useful to have a visualizationsoftware at hand. We explain how to use our software surfex for su
h purposes.surfex 
an be used dire
tly on our webpage [Lab03a℄. It 
an produ
e high qualityraytra
ed images for publi
ations in 
olor or in bla
k/white. Indeed, all the imagesin this 
hapter are produ
ed using surfex in 
onne
tion with Singular [GPS01℄.This 
omputer algebra program has been used to 
ompute a primary de
ompositionof the ideal (f, F9) des
ribing the 27 lines of f with multipli
ities whi
h allowed us todraw the lines on the surfa
es using surfex. Here, F9 denotes Clebs
h's 
ovariantof degree 9 (see, e.g., [LvS03, appendix 4.1℄ for a determinental formula for this
ovariant).The webpage www.Cubi
Surfa
e.net [LvS00℄ 
ontains some movies and moreimages. surfex [HLM05℄ uses S. Endraÿ's surf [End01℄ to produ
e the highquality raytra
ed images of the surfa
es and R. Morris's LSMP [Mor03℄ andK. Polthier's JavaView [Pol01℄ to allow rotation and s
aling of a triangulatedpreview. 141

www.CubicSurface.net


142 12. ILLUSTRATING THE CLASSIFICATION OF REAL CUBIC SURFACESSeveral mathemati
ians have already given real a�ne equations for parti
ularlyinteresting 
ubi
 surfa
es su
h as the Clebs
h Diagonal Surfa
e or the four-nodal
ubi
 surfa
e. For some examples of Rodenberg's series there also exist a�ne equa-tions. But this series is restri
ted to only a few types of 
ubi
 surfa
es, and severalof Rodenberg's models do not show all the proje
tive real lines be
ause some are atin�nity. In fa
t, this was Rodenberg's intention: His aim was to give an overviewof the possible singularities on 
ubi
 surfa
es and the possible a�ne views of theproje
tive surfa
es.Here, instead, we do not show di�erent a�ne views of the same surfa
e. We
hoose real a�ne equations that allow us to show all singularities and lines in asingle image (or a single real-world model if we use 3d-printers).12.1. Knörrer/Miller's 45 Types of Real Cubi
 Surfa
esTo state Knörrer/Miller's 
lassi�
ation of real 
ubi
 surfa
es with only rationaldouble points as singularities we need the following de�nition. For details andadditional results we refer to their arti
le [KM87℄.Definition 12.1 (p. 54/55 in [KM87℄).(1) µR denotes the number of (−2)-
urves de�ned over R in the dual resolutiongraph of a rational double point that is de�ned over R. ν denotes thenumber of pairs of non-interse
ting 
omplex 
onjugate (−2)-
urves in thisgraph.Name Old Name Normal Form Coxeter Diagram µR ν

A−

2k B2k+1 x2k+1 + y2
− z2 , 2k 0 k = 1, 2

A+
2k B2k+1 x2k+1 + y2 + z2 0 k − 1 k = 1

A−

2k−1 B2k x2k + y2
− z2 , 2k − 1 0 k = 2, 3

A+
2k−1 B2k x2k

− y2
− z2 1 k − 1 k = 2

A−

1 C2 x2 + y2 − z2 1 0

A�

1 C2 x2 + y2 + z2 1 0

D−

4 U6 x2y − y3 − z2 4 0

D+
4 U6 x2y + y3 + z2 2 1

D−

5 U7 x2y + y4
− z2 5 0

E−

6 U8 x3 + y4 − z2 6 0Table 12.1. The types of singularities o

uring on real 
ubi
 sur-fa
es, their normal forms, their Coxeter diagrams, and the num-bers µR and ν.(2) Let Σ be a sequen
e of six points de�ned over R in almost general positionin P2(C) in the sense of [Dem80, p. 39℄. Then there exists r(Σ) ∈ N0,s.t. Σ 
onsists of 2r points that are invariant under 
omplex 
onjugationand 6 − 2r pairwise 
omplex 
onjugate points. We 
all r(Σ) the realityindex of Σ.(3) Let X be a 
ubi
 surfa
e in P(C) de�ned over R with only rational doublepoints. The reality index r(X) of X is de�ned as follows: Let X̃ denotethe desingularization of X and X(Σ) the blowup of P2(C) along Σ. Then,
r(X) = r(Σ), if X̃ ∼= X(Σ) for a sequen
e Σ of six points in almost generalposition in P2(C). Otherwise, r(X) = −1.



12.1. KNÖRRER/MILLER'S 45 TYPES OF REAL CUBIC SURFACES 143Using this notion it is possible to 
ompute the number of lines on a real 
ubi
surfa
e:Theorem 12.1 (Satz 2.8 in [KM87℄). Let X ⊂ P3(C) be a 
ubi
 surfa
e de�nedover R with only rational double points as singularities. Suppose that the real part
XR ⊂ P3(R) of X has k singular points. Denote by µR(X) the sum of the µR forthese singular points and by ν(X) the sum of the ν of all singularities on X. Thenthe real part XR 
ontains exa
tly l(XR) lines, where(12.1) l(XR) =

(2 + 2r(X) − µR(X))(1 + 2r(X) − µR(X))

2
−(r(X)−2)+k−ν(X).For a 
ubi
 surfa
e X ⊂ P3(C) we 
an read the topology of its real part

XR ⊂ P3(R) from the reality index. E.g., the �ve smooth 
ubi
 surfa
es, 
las-si
ally denoted by F1, F2, . . . , F5 (see [Seg42℄), are 
lassi�ed by the reality index,e.g., r(F5) = −1.Example 12.1. We illustrate the previous theorem using our software Spi
y:We 
onstru
t �ve points on a 
ir
le and another point. Furthermore, we writea Singular pro
edure whi
h 
omputes the equation of the 
ubi
 surfa
e and thelines on them (this 
an be done by only 
omputing 3 × 3 determinants, see e.g.[LvS03℄). We 
an now tell Spi
y to re
ompute the equation and then surf todraw the 
orresponding image ea
h time one of the six points has been moved (see�gure 12.1, for details we refer to [LvS03℄). Using Knörrer/Miller's formula (12.1),it is easy to 
ompute the number of lines for the surfa
e X in the leftmost �gure.This one is smooth, i.e. k = µR(X) = ν(X) = 0, and all the six points are real, i.e.
r(X) = 3. By the formula, X 
ontains l(X) = 27 real lines (whi
h is also easy tosee by other means).

P3

P1

P4

P5

P0

P2 P2

P3

P1

P4

P5

P0

P2

P3

P1

P4

P5

P0

1b

1a

2b

2a

3b

3a

Figure 12.1. The blowing-up of the proje
tive plane in six points,su
h that all six are on a 
ommon 
oni
, is a 
ubi
 surfa
e with anordinary double point. Note the 
hanging of the lines, when wedrag the point P2. When P2 lies on the 
oni
 through the other�ve points, 2 · 6 lines meet in the double point (1b � 3b) and sixpairs of two lines 
oin
ide (1a � 3a).



144 12. ILLUSTRATING THE CLASSIFICATION OF REAL CUBIC SURFACESNow let the sixth point also be on the 
ir
le as in the rightmost �gure. Then itis well-known that the 
orresponding 
ubi
 surfa
e develops an A−
1 -singularity andthat twelve of the 27 lines pass through this ordinary double point and 
oin
ide inpairs. This development 
an be visualized intera
tively using Spi
y by moving thesixth point slowly. A

ording to table 12.1 on page 142 µR(Y ) = 1, ν(X) = 0 forthe 1-nodal 
ubi
 surfa
e Y and of 
ourse k = 1. Formula (12.1) thus gives 21 asrequired.We 
an now state Knörrer/Miller's main result on 
ubi
 surfa
es with onlyrational double points:Theorem 12.2 (Classi�
ation, Liste 4 in [KM87℄). Let X ⊂ P3(C) be a 
ubi
surfa
e de�ned over R with only rational double points and let XR = X ∩P3(R) beits real part. Then the topologi
al type of XR is one of the 45 types given in table 12.2on the next page. If X has exa
tly 3A−

1 singularities and X 
ontains exa
tly 12 lines(no. 18/19 in the table) then its topologi
al type 
an be determined by prop. 12.3below. Otherwise, the topologi
al type of X is determined by its singularities, itsnumber of lines, and the reality index r(X).To explain how to distinguish between the topologi
al types 18 and 19, we needKnörrer/Miller's notion of a 
on�guration type of an A−
1 singularity. We only givea sloppy de�nition and illustrate it using surfex, see [KM87, p. 63℄ for details.For this lo
al study we have to work in a�ne spa
e:For an A−

1 singularity, the tangent 
one is of the form x2 + y2 − z2. This 
oneinterse
ts the 
ubi
 surfa
e X in a 
urve of degree 2·3 = 6, whi
h 
onsists in fa
t ofsix lines, 
ounted with multipli
ities. Knörrer/Miller des
ribe su
h a 
on�gurationby a small 
ir
le together with six points (
ounted with multipli
ities) be
ause asmall real sphere around the singularity interse
ts X in two small real �
ir
les�(�g. 12.2 on page 146). On ea
h of these 
ir
les there lies one point of ea
h of thereal lines. Therefore, Knörrer/Miller denote a pair of 
omplex 
onjugated lines bya point in the 
enter of the 
ir
le, the real points are drawn on the 
ir
le in the
orre
t order. Di�erent su
h 
on�gurations 
orrespond to 
ubi
 surfa
es of di�erenttopologi
al types.Example 12.2. Example (a) is a 
on�guration with one real point of multipli
ity
2, two real ones of multipli
ity 1, and two 
omplex 
onjugated ones. The other twoexamples show two doubled and two simple points (see �g. 12.2):(a) 2 , (b) 22 (KM18), (
) 2

2 (KM19). 2Proposition 12.3 (Topologi
al Types 18/19, p. 63 in [KM87℄). If a 
ubi
surfa
e X has exa
tly 3A−
1 singularities and 
ontains 12 lines then X has the topo-logi
al type 18 if the singular points have a 
on�guration of type 22 (example12.2 (b)). Otherwise, the A−

1 singularities of X have a 
on�guration of type 2
2(example 12.2 (
)) and X has the topologi
al type 19.



12.1. KNÖRRER/MILLER'S 45 TYPES OF REAL CUBIC SURFACES 145Name Sp. Cl. Sing. r l EquationKM1 I 12 ∅ 3 27 KM27 + 3
2
(x2 + y2

− z3)KM2 I 12 ∅ 2 15 KM27 + 8
5
((z + 1)2 − z2)KM3 I 12 ∅ 1 7 KM27 + 2

3
((z + 1)2 + (x − 1)2) − 4y2KM4 I 12 ∅ 0 3 KM2 − 4KM5 I 12 ∅ −1 3 KM27 − 2

3
((z + 1)2 + z2)KM6 II 10 A−

1 3 21 KM27 + 2(x2 + y2)KM7 II 10 A−

1 2 11 KM27 + z3 + y2KM8 II 10 A−

1 1 5 KM6 − 4y2KM9 II 10 A−

1 0 3 KM6 − 3(x2 + y2)KM10 II 10 A�

1 0 3 pc + (z + 1)·z2KM11 IV 8 2A−

1 3 16 KM27 + y2KM12 IV 8 2A−

1 2 8 KM27 + z2
− 1

5
(x + 1

2
)2KM13 IV 8 2A−

1 1 4 KM27 − y2KM14 III 9 A−

2 3 15 KM21 + 1
10

(y − 1)2KM15 III 9 A−

2 2 7 pl + z3 − z2(x − 1) − 1
5
(x − y)2KM16 III 9 A−

2 1 3 KM43 − y2KM17 III 9 A+
2 0 3 pc + z3KM18 VIII 6 3A−

1 3 12 KM43 + z2(x + 1
2
)KM19 VIII 6 3A−

1 3 12 KM43 + 2z2KM20 VIII 6 3A−

1 2 6 KM27 − z2KM21 VI 7 A−

2 A−

1 3 11 pl + z3 + z2(x + y − 2) + 1
10

(x − 1)2KM22 VI 7 A−

2 A−

1 2 5 pl + z3 + z2(x + y) + 1
5
(x − 1)2KM23 V 8 A−

3 3 10 wxy + (x + z)(y2
− ( 2

3
x)2 − ( 3

5
z)2), w = 1 − xKM24 V 8 A−

3 2 4 KM32 − 1
100

z2(x − z)KM25 V 8 A−

3 1 2 KM32 + 1
100

z2(x − z)KM26 V 8 A+
3 1 4 2(x2 + y2)w + 2x(z2

− 2x2
− 4y2), w = 1 − yKM27 XVI 4 4A−

1 3 9 4(pc + 1
2
) + 3(x2 + y2)(z − 6) − z(3 + 4z + 7z2)KM28 XIII 5 A−

2 2A−

1 3 8 KM43 + z2(x + 2)KM29 IX 6 2A−

2 3 7 KM43 + (x − 1)zKM30 IX 6 2A−

2 2 3 KM43 − 3
10

(x − 1)2KM31 X 6 A−

3 A−

1 3 7 wxz − (x + z)(x2
− y2), w = 1 − zKM32 X 6 A−

3 A−

1 2 3 wxy − (x + z)(x2 + y2), w = 1 − zKM33 VII 7 A−

4 3 6 wxy + y2z + yx2
− z3, w = 1 − x − y − zKM34 VII 7 A−

4 2 2 wxy − y2z + yx2 − z3, w = 1 − x − y − zKM35 XII 6 D−

4 3 6 (x + y + z)2w + xyz, w = 1
2
(1 − x − y − z)KM36 XII 6 D+

4 1 2 (x + y + z)2w + (x2 + y2)z, w = 1
2
(1 − x − y − z)KM37 XVII 4 2A−

2 A−

1 3 5 KM43 + (x − 1)z2KM38 XVIII 4 A−

3 2A−

1 3 5 wxz + y2(x + z), w = 2(1 + x − y + z)KM39 XIV 5 A−

4 A−

1 3 4 wxz − y2z + 1
2
x2y, w = 1

8
(1 − y − z)KM40 XI 6 A−

5 3 3 wxz + y2z + x3
− z3, w = 1 − xKM41 XI 6 A−

5 2 1 wxz + y2z + x3 + z3, w = 1KM42 XV 5 D−

5 3 3 wx2 + y2z + xz2, w = 1 + xKM43 XXI 3 3A−

2 3 3 tl + z3KM44 XIX 4 A−

5 A−

1 3 2 wxz − y2z − x3, w = 1 − zKM45 XX 4 E−

6 3 1 x2w − xz2 + y3, w = 1 − x − yTable 12.2. Our ni
e real a�ne equations for Knörrer/Miller's 45topologi
al types. The abreviation Sp. denotes S
hlä�i's spe
iesof the surfa
e, Cl. its 
lass, Sing. its singularities. r denotes thereality index and l the number of real lines on the surfa
e.
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KM18 (a) KM18 (b) KM19 (a) KM19 (b)Figure 12.2. The 
on�guration of the lines 
ut out by the tan-gent 
one at one of the three A−
1 singularities of our surfa
es withtopologi
al types no. 18 and 19. For ea
h of the surfa
es, we showtwo views (a), (b) from di�erent angles. The white lines have mul-tipli
ity two, the bla
k ones have multipli
ity one. The �gure aboveillustrates how surfex 
an draw 
urves on surfa
es using the 
or-responding feature of surf. To draw the two doubled white lines,we 
omputed the equations f4, f5 
utting these out on the surfa
eusing Singular. Then we 
hose the numbers of the equations fromthe drop down menu in the row 
alled C2 and sele
ted the 
olorwhite.12.2. Constru
ting Ni
e Real A�ne Equations12.2.1. Ni
e Equations. By a ni
e real a�ne equation f for a given topo-logi
al type t we mean an equation, s.t. its proje
tive 
losure f has the requiredtopologi
al type and s.t. the plane at in�nity neither 
ontains a singularity nor a lineof f . It has also to be possible to see all its singularities and lines in a single pi
ture(modulo guessing using symmetries). This is not a pre
ise de�nition. Nevertheless,we formulate our main result in the form of a theorem:Theorem 12.4. For ea
h topologi
al type t ∈ {1, 2, . . . , 45} of real 
ubi
 surfa
eswith only rational double points there is a ni
e a�ne equation KMt in the sense ofthe pre
eding paragraph. The equations KMt are given in table 12.2 on page 145and the 
orresponding pi
tures are shown in the �gures 12.3, 12.4, 12.5. The 
olorsof the lines indi
ate their multipli
ities.Remark 12.5. For a ni
e equation for a given topologi
al we do not require thegreatest possible symmetry be
ause we want the equations to be generi
 in the sensethat the 
on�guration of the lines on the surfa
e should not be too spe
ial. E.g., theClebs
h Cubi
 Surfa
e has 10 so-
alled E
kardt Points in whi
h three of its 27 reallines meet, but a generi
 
ubi
 surfa
e with 27 lines does not have any su
h point.



12.2. CONSTRUCTING NICE REAL AFFINE EQUATIONS 1471�3:�(r:3, 27l.)�(r:2, 15l.)�(r:1, 7l.)4�6:�(r:0, 3l.)�(r:-1, 3l.)
A−

1(r:3, 21l.)7�9:
A−

1(r:2, 11l.)
A−

1(r:1, 5l.)
A−

1(r:0, 3l.)10�12:
A�

1(r:0, 3l.)
2A−

1(r:3, 16l.)
2A−

1(r:2, 8l.)13�15:
2A−

1(r:1, 4l.)
A−

2(r:3, 15l.)
A−

2(r:2, 7l.) Figure 12.3. The surfa
es KM1, . . . ,KM15. The 
olors of thelines indi
ate their multipli
ities: � 1, � 2, � 3, � 4, � 5,
� 6, � 8, � 9, � 10, � 12, � 15, � 16, � 27.
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A−

2(r:1, 3l.)
A+

2(r:0, 3l.)
3A−

1(r:3, 12l.)19�21:
3A−

1(r:3, 12l.)
3A−

1(r:2, 6l.)
A−

2 , A−
1(r:3, 11l.)22�24:

A−
2 , A−

1(r:2, 6l.)
A−

3(r:3, 10l.)
A−

3(r:2, 4l.)25�27:
A−

3(r:1, 2l.)
A+

3(r:1, 4l.)
4A−

1(r:3, 9l.)28�30:
A−

2 , 2A−
1(r:3, 8l.)

2A−
2(r:2, 7l.)

2A−
2(r:2, 3l.) Figure 12.4. The surfa
es KM16, . . . ,KM30. The 
olors of thelines indi
ate their multipli
ities: � 1, � 2, � 3, � 4, � 5,

� 6, � 8, � 9, � 10, � 12, � 15, � 16, � 27.
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A−

3 , A−
1(r:3, 7l.)

A−
3 , A−

1(r:2, 3l.)
A−

4(r:3, 6l.)34�36:
A−

4(r:2, 2l.)
D−

4(r:3, 6l.)
D+

4(r:1, 2l.)37�39:
2A−

2 , A−
1(r:3, 5l.)

A−
3 , 2A−

1(r:3, 5l.)
A−

4 , A−
1(r:3, 4l.)40�42:

A−
5(r:3, 3l.)

A−
5(r:2, 1l.)

D−
5(r:3, 3l.)43�45:

3A−
2(r:3, 3l.)

A−
5 , A−

1(r:3, 2l.)
E−

6(r:2, 1l.)Figure 12.5. The surfa
es KM31, . . . ,KM45. The 
olors of thelines indi
ate their multipli
ities: � 1, � 2, � 3, � 4, � 5,
� 6, � 8, � 9, � 10, � 12, � 15, � 16, � 27.
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hlä�i orders the 
ubi
 surfa
es �rst by their 
lass and thenby the worst singularity o

uring. This di�ers from Knörrer/Miller's order whi
his �rst by the sum of the Milnor numbers of the singularities and then by the worstsingularity o

uring.In the following subse
tions we des
ribe how to 
onstru
t su
h surfa
es.12.2.2. Via Proje
tive Equations. For the proje
tive 
ase, S
hlä�i alreadygave equations in [S
h63℄. He des
ribes in a very geometri
 way how to 
onstru
tthem. In [Cay69℄, Cayley gives the same equations again and 
omputes a lot ofadditional data 
onne
ted to the surfa
es.1To obtain a ni
e real a�ne equation from one of S
hlä�i's equations is an easytask for most topologi
al types with higher singularities (A3 or higher): We justhave to 
hoose a good hyperplane at in�nity and maybe some 
onstants whi
h isnot di�
ult using our tool surfex:Example 12.3. Let us take the equation wxz + y2z + x3 = 0 given by S
hlä�i[S
h63, p. 357℄ for a proje
tive 
ubi
 surfa
e with an A1 and A5 singularity. The
hoi
e w = 1 − z gives our a�ne equation KM44.For those surfa
es with only A1 and A2 singularities, this method does not workwell be
ause of the great number of free parameters. In this 
ase, we 
an either writedown the equation dire
tly (se
tion 12.2.3), or we 
an use a deformation pro
ess(se
tion 12.2.4) already des
ribed by F. Klein in [Kle73℄.12.2.3. Dire
t Constru
tion. In some 
ases, it is easy to write down a ni
ereal a�ne equation for a topologi
al type dire
tly using symmetry. For this purpose,we will use the three plane 
urves shown in �gure 12.6.
tl := x3 + 3x2 − 3xy2 + 3y2 − 4 pc := tl + 4 pl := (x − 1)(y − 1)(x + y)Figure 12.6. Three plane 
urves, useful for 
onstru
ting ni
eequations for 
ubi
 surfa
es.Example 12.4 (Constru
ting KM43 with three A−

2 Singularities). We take thepolynomial tl de�ning three triangle-symmetri
 lines (�g. 12.6) in the x, y-plane andadd the term z3: KM43 = tl + z3. At ea
h interse
tion point of the lines tl, thisgives a singularity of type A−
2 with z-
oordinate 0, see �g. 12.8(a).The four-nodal surfa
e KM27 
an be 
onstru
ted in a similar way. This anda lot more information on nodal surfa
es with dihedral symmetry 
an be found inS. Endraÿ's Ph.D. thesis [End96℄. The following example uses a plane 
urve with asolitary point. In the same way we obtain the surfa
e KM26 with an A+

3 singularity.1Attention, Cayley's list on p. 321 
ontains some typos.
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ting KM10 with an A�

1 Singularity). To 
onstru
t asurfa
e with an A�

1 Singularity whi
h has the normal form x2 +y2 +z2 we start withthe triangle-symmetri
 plane 
ubi
 pc (�g. 12.6 on the fa
ing page). The origin is asolitary point (i.e., a singularity with normal form x2+y2). Thus the surfa
e pc+z2has an A�

1 singularity with normal form x2 + y2 + z2 and is triangle-symmetri
. Toobtain the desired a�ne topology we require a third root on the {x = y = 0} axes at
z = −1: KM10 = pc + (z + 1)·z2.12.2.4. The Deformation Pro
ess. Klein's strategy for obtaining surfa
eswith fewer singularities from surfa
es with many singularities is based on the fa
tthat any singularity on a 
ubi
 surfa
e 
an be deformed separately.By the de�nition of a singularity, the origin 
an only be a singularity of ana�ne surfa
e f if the tangent 
one of f has degree at least 2. Thus, in order tosmooth an isolated singularity at the origin, we 
an simply add a term of degree
1 or 0. But whi
h terms 
an we add to the equation of f without 
hanging thetype of a singularity at the origin? For A1 singularities, this is very easy: Thesesingularities are 
hara
terized by the fa
t that their tangent 
one also de�nes an A1singularity.2 So, we 
an add any term of degree greater than two and any term ofdegree two whose 
oe�
ient is small enough. E.g. x2 + y2 − z2 + 1

10z2 + 1
13xy + x3has a singularity of type A−

1 at the origin.Using the pre
eding fa
ts we 
an deform a 
ubi
 surfa
e with four singularitiesof type A−
1 into one with only three su
h singularities:Example 12.6 (Smoothing one of four A1 Singularities). Let KM27 be the
ubi
 surfa
e with four A−

1 -singularities (see table 12.2 on page 145). Three of itssingularities lie in the plane {z = 0}. Using surfex, it is easy to �nd an ε, s.t. thesurfa
e KM27 + εz2 has the desired topology (see �g. 12.7):Go to the surfex web-page [HLM05℄, start the surfex program, and enterthe equation of KM27. Then add a term +0.1*z�2 and 
he
k the permanently
he
kbox � this will premanently re
ompute raytra
ed images of your surfa
e. Dragthe 
omputer mouse over the green ball to rotate the surfa
e until you see all sin-gularities. You 
an s
ale the image by pressing s on your keyboard while dragging.Now your surfex s
reen should look similar to �g. 12.7 on the following page. Thesingularity in the middle has been smoothed in su
h a way that the neighborhood ofthe singularity looks like a hyperboloid of one sheet. Adding -0.1*z�2 leads to aneighborhood whi
h looks like a hyperboloid of two sheets. 2It is a little more subtle to keep singularities of type A−
j or A+

j , j > 1, whiledeforming others. Forgetting about the sign for a moment, these singularities havethe equation xj+1 + y2 + z2 in a suitable 
oordinate system. Aj , j > 1, singularitiesare 
hara
terized by the property that their tangent 
one is of degree two and
onsists of the union of two di�erent planes.3Let f be a polynomial in three variables x, y, z de�ning a singularity of type
Aj , j ≥ 2, at the origin. By the �nite determina
y theorem (see, e.g., [Dim87℄),we 
an add an element of the ideal I := m

2·Jf to f without 
hanging the type2This is also the reason why the geometers of the 19th 
entury 
alled the A1 singularities
oni
al singularities or singularities of type C2. Other names are proper node, ordinary doublepoint.3This is the reason why the 
lassi
al geometers 
alled a singularity of type Aj a biplanar node
Bj+1. A singularity whose tangent 
one 
onsists of a single multiple plane was 
alled a uniplanarnode.
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Figure 12.7. Smoothing one of the four singularities of the 
ubi
surfa
e KM27.of the singularity. Here, m denotes the maximal ideal (x, y, z) of the origin andthus m
2 = (x2, xy, xz, y2, yz, z2). Jf := (∂f

∂x , ∂f
∂y , ∂f

∂z ) is the so-
alled ja
obian idealgenerated by the partial derivatives of f .Example 12.7. We take the singularity of type A−
3 at the origin, de�ned by

f := x4+y2−z2 = 0. Its ja
obian ideal is Jf = (x3, y, z). If we 
hoose g1 := xy ∈ m
2and g2 := y ∈ Jf we get g := g1g2 = xy2. Then f + g still de�nes a singularity oftype A3 at the origin. Furthermore, f + εg is an A−

3 singularity for ε small enough.We now 
ome to the global situation of a 
ubi
 surfa
e f with only isolatedsingularities of type Aj , j ≥ 1. The following example des
ribes how to use thete
hniques above to deform some of its singularities while keeping others:Example 12.8 (Deforming two of three A−
2 Singularities to A−

1 Singularities).We start with the surfa
e KM43 whi
h has exa
tly three singularities of type A−
2(�g. 12.8(a)). The surfa
e tl + z3 + z2 (�g. 12.8(b)) has three singularities oftype A−

1 at the same 
oordinates, be
ause the tangent 
one is a 
one of the form
x2 − y2 + z2 lo
ally at ea
h of these points. One of these singularities has the
oordinates Q := (−2, 0, 0). To get a surfa
e with a singularity of type A−

2 at Q andtwo singularities of type A−
1 , we need to adjust the 
onstru
tion slightly.Our general remarks from the beginning of this subse
tion tell us that we haveto look at the ja
obian ideal JKM43

at Q. Over the rational numbers, Singulargives the following primary de
omposition: JKM43
= (x, y, z2) ∩ (x − 1, y2 − 3, z2)∩

(x + 2, y, z2). Lo
ally at Q, the relevant primary 
omponent is (x + 2, y, z2). We
hoose E := x + 2 ∈ (x + 2, y, z2). As z2 ∈ m
2, we then know that KM43 + z2 · Ehas a singularity of type A2 at Q.Lo
ally at the other two singularities (whi
h both have x-
oordinate 1), E takesthe value 1 + 2 = 3. Thus, at these singularities, KM43 + z2 · E behaves likeKM43 + z2 · 3, whi
h has A−

1 singularities at these points as already seen above.To 
he
k that our 
hoi
es of planes and 
onstants were reasonable and to un-derstand the 
onstru
tion a little better, we 
an again use surfex. We type theequation of KM43 into surfex as f1. Then we add another two equations using theadd eqn button and 
hoose f2 to be x+2 and f3 to be z. If the permanently 
he
k-box is a
tivated we already see the three surfa
es in one pi
ture. When adjusting the
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(a) (b) (c)Figure 12.8. Deforming the surfa
e KM43 (image (a)) with threesingularities of type A−
2 into KM28 (image (c)) with one su
h sin-gularity and two A−

1 singularities.
olors by 
li
king at the right of the equations, we get a result similar to �g. 12.8.We 
an hide some of the surfa
es by desele
ting the 
he
kbox at the right of theequations. When typing into f1 the 
hanges des
ribed above, we obtain su

essivelythe three lower images shown in the �gure. We 
an produ
e the bla
k/white imagesused for the present publi
ation in the following way: We press the button showingthe small disk, sele
t the dithered 
he
kbox, 
hoose an appropriate resolution, andthen 
li
k on save. A small dialog shows up, where we 
an give some �lename. Thehigh-resolution image is then 
omputed on the webserver. From there, it 
an thenbe downloaded using the your files button in the surfex window. 2



A 
one, a quadri
 surfa
e with a node. How many nodes 
an a surfa
e of degree din P3 have?



FinallyIt is natural to try to apply the methods and algorithms presented in the se
ondpart of this work to similar 
ases. In parti
ular, it would be interesting to 
onstru
ta surfa
e in P3 of degree 11 with 430 nodes and to �nd out if our 
onje
ture on thenumber of nodes on dihedral-symmetri
 surfa
es (
hapter 8) 
an be improved. Ifsu
h surfa
es exist, will their numbers of nodes be realizable with only real nodes?Families of varieties within whi
h one sear
hes for some parti
ularly interest-ing examples also o

ur in other bran
hes of algebrai
 geometry. Variants of thealgorithm that we presented in 
hapter 9 
an thus also be applied to su
h problems.Another wide �eld with a lot of potential for extensions is the visualization ofreal hypersurfa
es with (many) singularities. First, our visualization tools whi
hwe presented in part 3 
an be optimized and extended in many aspe
ts. But alsothe triangulation of real singular varieties whi
h has still not been developped ina satisfa
tory way would be an interesting a
hievement. E.g., in 
ombination with(maybe three-dimensional) dynami
 
onstru
tive geometry software (similar to ourtool Spi
y) this would open the way to make visualization even more intera
tiveand intuitive.When browsing through our histori
al survey (part 1) and our new 
onstru
tions(part 2), one 
an see that there are still lots of interesting open questions in the�eld of hypersurfa
es with many singularities and related areas. We hope that thepresent work en
ourages many other people to work on this fas
inating subje
t.
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